Cite this paper:
Bo QU, Albert J. GABRIC, Rebecca JACKSON. Simulated perturbation in the sea-to-air flux of dimethylsulfide and the impact on polar climate[J]. Journal of Oceanology and Limnology, 2021, 39(1): 110-121

Simulated perturbation in the sea-to-air flux of dimethylsulfide and the impact on polar climate

Bo QU1, Albert J. GABRIC2, Rebecca JACKSON2
1 School of Science, Nantong University, Nantong 226219, China;
2 School of Environment and Science, Griffith University, Brisbane 4111, QLD, Australia
Abstract:
Marine biogenic emission of dimethylsulfide (DMS) has been well recognized as the main natural source of reduced sulfur to the remote marine atmosphere and has the potential to affect climate, especially in the polar regions. We used a global climate model (GCM) to investigate the impact on atmospheric chemistry from a change to the contemporary DMS flux to that which has been projected for the late 21st century. The perturbed simulation corresponded to conditions that pertained to a tripling of equivalent CO2, which was estimated to occur by year 2090 based on current worst-case greenhouse gas emission scenarios. The changes in zonal mean DMS flux were applied to 50°S-70°S Antarctic (ANT) and 65°N-80°N Arctic (ARC) regions. The results indicate that there are clearly different impacts after perturbation in the southern and northern polar regions. Most quantities related to the sulfur cycle show a higher increase in ANT. However, most sulfur compounds have higher peaks in ARC. The perturbation in DMS flux leads to an increase of atmospheric DMS of about 45% in ANT and 33.6% in ARC. The sulfur dioxide (SO2) vertical integral increases around 43% in ANT and 7.5% in ARC. Sulfate (SO4) vertical integral increases by 17% in ANT and increases around 6% in ARC. Sulfur emissions increases by 21% in ANT and increases by 9.7% in ARC. However, oxidation of DMS by OH increases by 38.2% in ARC and by 15.17% in ANT. Aerosol optical depth (AOD) increases by 4% in the ARC and by 17.5% in the ANT, and increases by 22.8% in austral summer. The importance of the perturbation of the biogenic source to future aerosol burden in polar regions leads to a cooling in surface temperature of 1 K in the ANT and 0.8 K in the ARC. Generally, polar regions in the Antarctic Ocean will have a higher offsetting effect on warming after DMS flux perturbation.
Key words:    dimethylsulfide (DMS)|sulfur dioxide|DMS sea-to-air flux|perturbation|global climate model (GCM)|polar region   
Received: 2020-01-06   Revised: 2020-03-03
Tools
PDF (3351 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Bo QU
Articles by Albert J. GABRIC
Articles by Rebecca JACKSON
References:
Bates T S, Lamb B K, Guenther A, Dignon J, Stoiber R E. 1992. Sulfur emissions to the atmosphere from natural sources. Journal of Atmospheric Chemistry, 14(1-4):315-337, https://doi.org/10.1007/BF00115242.
Bopp L, Aumont O, Belviso S, Monfray P. 2003. Potential impact of climate change on marine dimethyl sulfide emissions. Tellus B, 55(1):11-22, https://doi.org/10.3402/tellusb.v55i1.16359.
Charlson R J, Lovelock J E, Andreae M O, Warren S G. 1987.Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature, 326(6114):655-661, https://doi.org/10.1038/326655a0.
Chen G, Davis D D, Kasibhatla P, Bandy A R, Thornton D C, Huebert B J, Clarke A D, Blomquist B W. 2000. A study of DMS oxidation in the tropics:comparison of Christmas Island field observations of DMS, SO2, and DMSO with model simulations. Journal of Atmospheric Chemistry, 37(2):137-160, https://doi.org/10.1023/A:1006429932403.
Chen Q J, Sherwen T, Evans M, Alexander B. 2018. DMS oxidation and sulfur aerosol formation in the marine troposphere:a focus on reactive halogen and multiphase chemistry. Atmospheric Chemistry and Physics, 18(18):13 617-13 637, https://doi.org/10.5194/acp-18-13617-2018.
Coello-Camba A, Agustí S. 2017. Thermal thresholds of phytoplankton growth in polar waters and their consequences for a warming polar ocean. Frontiers in Marine Science, 4:168, https://doi.org/10.3389/fmars.2017.00168.
Croft B, Wentworth G R, Martin R V, Leaitch W R, Murphy J G, Murphy B N, Kodros J K, Abbatt J P D, Pierce J R. 2016. Contribution of Arctic seabird-colony ammonia to atmospheric particles and cloud-albedo radiative effect.Nature Communications, 7:13444, https://doi.org/10.1038/ncomms13444.
Davis D, Chen G, Kasibhatla P, Jefferson A, Tanner D, Eisele F, Lenschow D, Neff W, Berresheim H. 1998. DMS oxidation in the Antarctic marine boundary layer:comparison of model simulations and held observations of DMS, DMSO, DMSO2, H2SO4(g), MSA(g), and MSA(p). Journal of Geophysical Research, 103(D1):1 657-1 678, https://doi.org/10.1029/97JD03452.
Feichter J, Kjellström E, Rodhe H, Dentener F, Lelieveldi J, Roelofs G J. 1996. Simulation of the tropospheric sulfur cycle in a global climate model. Atmospheric Environment, 30(10-11):1 693-1 707, https://doi.org/10.1016/1352-2310(95)00394-0.
Gabric A J, Cropp R, Hirst T, Marchant H. 2003. The sensitivity of dimethyl sulfide production to simulated climate change in the Eastern Antarctic Southern Ocean. Tellus B, 55(5):966-981, https://doi.org/10.1034/j.1600-0889.2003.00077.x.
Gabric A J, Cropp R A, McTainsh G H, Johnston B M, Butler H, Tilbrook B, Keywood M. 2010. Australian dust storms in 2002-2003 and their impact on Southern Ocean biogeochemistry. Global Biogeochemical Cycles, 24(2):GB2005, https://doi.org/10.1029/2009GB003541.
Gabric A J, Matrai P, Jones G, Middleton J. 2018. The nexus between sea ice and polar emissions of marine biogenic aerosols. Bulletin of the American Meteorological Society, 99(1):61-81, https://doi.org/10.1175/bams-d-16-0254.1.
Gabric A J, Qu B, Matrai P A, Hirst A C. 2005a. The simulated response of dimethylsulfide production in the Arctic Ocean to global warming. Tellus B, 57(5):391-403, https://doi.org/10.1111/j.1600-0889.2005.00163.x.
Gabric A J, Qu B, Matrai P A, Murphy C, Lu H L, Lin D R, Qian F, Zhao M. 2014. Investigating the coupling between phytoplankton biomass, aerosol optical depth and sea-ice cover in the Greenland Sea. Dynamics of Atmospheres and Oceans, 66:94-109, https://doi.org/10.1016/j.dynatmoce.2014.03.001.
Gabric A J, Qu B, Rotstayn L, Shephard J M. 2013. Global simulations of the impact on contemporary climate of a perturbation to the sea-to-air flux of dimethylsulfide.Australian Meteorology and Oceanographic Journal, 63:365-376, https://doi.org/10.22499/2.6303.002.
Gabric A J, Simó R, Cropp R A, Hirst A C, Dachs J. 2004.Modeling estimates of the global emission of dimethylsulfide under enhanced greenhouse conditions.Global Biogeochemical Cycles, 18(2):GB2014, https://doi.org/10.1029/2003gb002183.
Ghahremaninezhad R, Gong W, Galí M, Norman A L, Beagley S R, Akingunola A, Zheng Q, Lupu A, Lizotte M, Levasseur M, Leaitch W R. 2019. Dimethyl sulfide and its role in aerosol formation and growth in the Arctic summer-a modelling study. Atmospheric Chemistry and Physics, 19(23):14 455-14 476, https://doi.org/10.5194/acp-19-14455-2019.
Ghahremaninezhad R, Norman A L, Abbatt J P D, Levasseur M, Thomas J L. 2016. Biogenic, anthropogenic and sea salt sulfate size-segregated aerosols in the Arctic summer.Atmospheric Chemistry and Physics, 16(8):5 191-5 202, https://doi.org/10.5194/acp-16-5191-2016.
Gordon H B, O'Farrell S P. 1997. Transient climate change in the CSIRO coupled model with dynamic sea ice. Monthly Weather Review, 125(5):875-907, https://doi.org/10.1175/1520-0493(1997)125<0875:TCCITC>2.0.CO;2.
Gordon H B, Rotstayn L D, McGregor J L, Dix M R, Kowalczyk E A, O'Farrell S P, Waterman L J, Hirst A C, Wilson S G, Collier M A, Watterson I G, Elliott T I. 2002.The CSIRO Mk3 Climate System Model. CSIRO Atmospheric Research Technical Paper No. 60.
Hoffmann E H, Tilgner A, Schrödner R, Bräuer P, Wolke R, Herrmann H. 2016. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry. Proceedings of the National Academy of Sciences of the United States of America, 113(42):11 776-11 781, https://doi.org/10.1073/pnas. 1606320113.
Hunt B G, Davies H L. 1997. Mechanism of multidecadal climatic variability in a global climatic model.International Journal of Climatology, 17(6):565-580, https://doi.org/10.1002/(sici)1097-0088(199705)17:6<565::aid-joc172>3.0.co;2-6.
Jang E, Park K T, Yoon Y J, Kim T W, Hong S B, Becagli S, Traversi R, Kim J, Gim Y. 2019. New particle formation events observed at the King Sejong Station, Antarctic Peninsula-Part 2:link with the oceanic biological activities. Atmospheric Chemistry and Physics, 19(11):7 595-7 608, https://doi.org/10.5194/acp-19-7595-2019.
Jung C H, Yoon Y J, Kang H J, Gim Y, Lee B Y, Ström J, Krejci R, Tunved P. 2018. The seasonal characteristics of cloud condensation nuclei (CCN) in the arctic lower troposphere.Tellus B:Chemical and Physical Meteorology, 70(1):1-13, https://doi.org/10.1080/16000889.2018.1513291.
Karl M, Gross A, Leck C, Pirjola L. 2007. Intercomparison of dimethylsulfide oxidation mechanisms for the marine boundary layer:gaseous and particulate sulfur constituents.Journal of Geophysical Research:Atmospheres, 112(D15):D15304, https://doi.org/10.1029/2006jd007914.
Kerminen V M, Chen X M, Vakkari V, Petäjä T, Kulmala M, Bianchi F. 2018. Atmospheric new particle formation and growth:review of field observations. Environmental Research Letters, 13(10):103003, https://doi.org/10.1088/1748-9326/aadf3c.
Kloster S, Six K D, Feichter J, Maier-Reimer E, Roeckner E, Wetzel P, Stier P, Esch M. 2007. Response of dimethylsulfide (DMS) in the ocean and atmosphere to global warming. Journal of Geophysical Research, 112(G3):G03005, https://doi.org/10.1029/2006JG000224.
Korhonen H, Carslaw K S, Forster P M, Mikkonen S, Gordon N D, Kokkola H. 2010. Aerosol climate feedback due to decadal increases in Southern Hemisphere wind speeds.Geophysical Research Letters, 37(2):L02805, https://doi.org/10.1029/2009gl041320.
Korhonen H, Carslaw K S, Spracklen D V, Mann G W, Woodhouse M T. 2008. Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans:a global model study. Journal of Geophysical Research:Atmospheres, 113(D15):D15204, https://doi.org/10.1029/2007jd009718.
Leck C, Bigg E K. 2010. New particle formation of marine biological origin. Aerosol Science and Technology, 44(7):570-577, https://doi.org/10.1080/02786826.2010.481222.
Liss P S, Merlivat L. 1986. Air-sea gas exchange rates:introduction and synthesis. In:Buat-Ménard P ed. The Role of Air-Sea Exchange in Geochemical Cycling.NATO ASI Series (Series C:Mathematical and Physical Sciences), vol. 185. Springer, Dordrecht. p.113-127, https://doi.org/10.1007/978-94-009-4738-2_5.
Liu J F, Fan S M, Horowitz L W, Levy H Ⅱ. 2011. Evaluation of factors controlling long-range transport of black carbon to the Arctic. Journal of Geophysical Research:Atmospheres, 116(D4):D04307, https://doi.org/10.1029/2010jd015145.
Lohmann U, Feichter J, Chuang C C, Penner J E. 1999. Prediction of the number of cloud droplets in the ECHAM GCM.Journal of Geophysical Research:Atmospheres, 104(D8):9 169-9 198, https://doi.org/10.1029/1999jd900046.
Lovelock J E, Maggs R J, Rasmussen R A. 1972. Atmospheric dimethyl sulphide and the natural sulphur cycle. Nature, 237(5356):452-453, https://doi.org/10.1038/237452a0.
Lv G C, Zhang C X, Sun X M. 2019. Understanding the oxidation mechanism of methanesulfinic acid by ozone in the atmosphere. Scientific Reports, 9(1):322, https://doi.org/10.1038/s41598-018-36405-0.
Malin G. 1997. Sulphur, climate and the microbial maze. Nature, 387(6636):857-858, https://doi.org/10.1038/43075.
Matrai P A, Vernet M. 1997. Dynamics of the vernal bloom in the marginal ice zone of the Barents Sea:dimethyl sulfide and dimethylsulfoniopropionate budgets. Journal of Geophysical Research:Oceans, 102(C10):22 965-22 979, https://doi.org/10.1029/96JC03870.
Mungall E L, Croft B, Lizotte M, Thomas J L, Murphy J G, Levasseur M, Martin R V, Wentzell J J B, Liggio J, Abbatt J P D. 2016. Dimethyl sulfide in the summertime Arctic atmosphere:measurements and source sensitivity simulations. Atmospheric Chemistry and Physics, 16(11):6 665-6 680, https://doi.org/10.5194/acp-16-6665-2016.
Nightingale P D, Malin G, Law C S, Watson A J, Liss P S, Liddicoat M I, Boutin J, Upstill-Goddard R C. 2000. In situ evaluation of air-sea gas exchange parameterizations using novel conservative and volatile tracers. Global Biogeochemical Cycles, 14(1):373-387, https://doi.org/10.1029/1999GB900091.
O'Farrell S P. 1998. Investigation of the dynamic sea ice component of a coupled atmosphere-sea ice general circulation model. Journal of Geophysical Research:Oceans, 103(C8):15 751-15 782, https://doi.org/10.1029/98jc00815.
Park K T, Jang S, Lee K, Yoon Y J, Kim M S, Park K, Cho H J, Kang J H, Udisti R, Lee B Y, Shin K H. 2017.Observational evidence for the formation of DMS-derived aerosols during Arctic phytoplankton blooms.Atmospheric Chemistry and Physics, 17(15):9 665-9 675.https://doi.org/10.5194/acp-17-9665-2017.
Preunkert S, Jourdain B, Legrand M, Udisti R, Becagli S, Cerri O. 2008. Seasonality of sulfur species (dimethyl sulfide, sulfate, and methanesulfonate) in Antarctica:inland versus coastal regions. Journal of Geophysical Research:Atmospheres, 113(D15):D15302, https://doi.org/10.1029/2008jd009937.
Qu B, Gabric A J. 2010. Using genetic algorithms to calibrate a dimethylsulfide production model in the Arctic Ocean.Chinese Journal of Oceanology and Limnology, 28(1):573-582, https://doi.org/10.1007/s00343-010-9062-x.
Qu B, Gabric A J, Jiang L, Li C. 2020. Comparison between early and late 21st C phytoplankton biomass and dimethylsulfide flux in the subantarctic southern ocean.Journal of Ocean University of China, 19(1):151-160, https://doi.org/10.1007/s11802-020-4235-5.
Qu B, Gabric A J, Lu H L, Lin D R. 2014. Spike in phytoplankton biomass in Greenland Sea during 2009 and the correlations among chlorophyll-a, aerosol optical depth and ice cover.Chinese Journal of Oceanology and Limnology, 32(2):241-254, https://doi.org/10.1007/s00343-014-3141-3.
Qu B, Gabric A J, Zeng M F, Lu Z F. 2016. Dimethylsulfide model calibration in the Barents Sea using a genetic algorithm and neural network. Environmental Chemistry, 13(2):413-424, https://doi.org/10.1071/EN14264.
Qu B, Gabric A J, Zeng M F, Xi J J, Jiang L M, Zhao L. 2017.Dimethylsulfide model calibration and parametric sensitivity analysis for the Greenland Sea. Polar Science, 13:13-22, https://doi.org/10.1016/j.polar.2017.07.001.
Qu B, Gabric A J, Zhao L, Sun W J, Li H H, Gu P J, Jiang L M, Zeng M F. 2018. The relationships among aerosol optical depth, ice, phytoplankton and dimethylsulfide and the implication for future climate in the Greenland Sea. Acta Oceanologica Sinica, 37(5):13-21, https://doi.org/10.1007/s13131-018-1210-8.
Quinn P K, Bates T S. 2011. The case against climate regulation via oceanic phytoplankton sulphur emissions. Nature, 480(7375):51-56, https://doi.org/10.1038/nature10580.
Quinn P K, Coffman D J, Johnson J E, Upchurch L M, Bates T S. 2017. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol. Nature Geoscience, 10:674-679, https://doi.org/10.1038/ngeo3003.
Quinn P K, Shaw G, Andrews E, Dutton E G, Ruoho-Airola T, Gong S L. 2007. Arctic haze:current trends and knowledge gaps. Tellus B, 59(1):99-114, https://doi.org/10.1111/j.1600-0889.2006.00236.x.
Rotstayn L D, Lohmann U. 2002. Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme. Journal of Geophysical Research:Atmospheres, 107(D21):AAC 20-21-AAC 20-21, https://doi.org/10.1029/2002jd002128.
Rotstayn L D, Penner J E. 2001. Indirect aerosol forcing,quasi forcing, and climate response. Journal of Climate, 14(13):2 960-2 975, https://doi.org/10.1175/1520-0442(2001)014<2960:IAFQFA>2.0.CO;2.
Shaw G E. 1995. The arctic haze phenomenon. Bulletin of the American Meteorological Society, 76(12):2 403-2 414, https://doi.org/10.1175/1520-0477(1995)076<2403:tahp>2.0.co;2.
Shon Z H, Davis D, Chen G, Grodzinsky G, Bandy A, Thornton D, Sandholm S, Bradshaw J, Stickel R, Chameides W, Kok G, Russell L, Mauldin L, Tanner D, Eisele F. 2001.Evaluation of the DMS flux and its conversion to SO2 over the southern ocean. Atmospheric Environment, 35(1):159-172, https://doi.org/10.1016/S1352-2310(00)00166-7.
Simó R, Dachs J. 2002. Global ocean emission of dimethylsulfide predicted from biogeophysical data.Global Biogeochemical Cycles, 16(4):26-1-26-10, https://doi.org/10.1029/2001GB001829.
Vallina S M, Simó R, Gassó S. 2006. What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and CCN and model-estimated OH radical and rainfall. Global Biogeochemical Cycles, 20(1):GB1014, https://doi.org/10.1029/2005GB002597.
Vallina S M, Simó R, Gassó S, de Boyer-Montégut C, Del Río E, Jurado E, Dachs J. 2007. Analysis of a potential "solar radiation dose-dimethylsulfide-cloud condensation nuclei" link from globally mapped seasonal correlations.Global Biogeochemical Cycles, 21(2):GB2004, https://doi.org/10.1029/2006GB002787.
Woodhouse M T, Carslaw K S, Mann G W, Vallina S M, Vogt M, Halloran P R, Boucher O. 2010. Low sensitivity of cloud condensation nuclei to changes in the sea-air flux of dimethyl-sulphide. Atmospheric Chemistry and Physics, 10(16):7 545-7 559, https://doi.org/10.5194/acp-10-7545-2010.
Woodhouse M T, Mann G W, Carslaw K S, Boucher O. 2013.Sensitivity of cloud condensation nuclei to regional changes in dimethyl-sulphide emissions. Atmospheric Chemistry and Physics, 13(5):2 723-2 733, https://doi.org/10.5194/acp-13-2723-2013.
Yan J P, Zhang M M, Jung J, Lin Q, Zhao S H, Xu S Q, Chen L Q. 2020. Influence on the conversion of DMS to MSA and SO42- in the Southern Ocean, Antarctica. Atmospheric Environment, 233:117611, https://doi.org/10.1016/j.atmosenv.2020.117611.
Zhao C F, Garrett T J. 2015. Effects of Arctic haze on surface cloud radiative forcing. Geophysical Research Letters, 42(2):557-564, https://doi.org/10.1002/2014gl062015.
Copyright © Haiyang Xuebao