Cite this paper:
Yunlong SHI, Dezhou YANG, Yijun HE. Numerical study on interaction between eddies and the Kuroshio Current east of Taiwan, China[J]. Journal of Oceanology and Limnology, 2021, 39(2): 388-402

Numerical study on interaction between eddies and the Kuroshio Current east of Taiwan, China

Yunlong SHI1,2, Dezhou YANG2,3,4, Yijun HE1
1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
2 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
3 Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
We investigated the interaction between mesoscale eddies and the Kuroshio Current east of Taiwan, China, using a fine-resolution regional general circulation model. Mesoscale eddies are injected into a region east of Taiwan, China, according to the quasi-geostrophic theory of stratified fluids. Modeled eddies propagated westward at the velocity of the first baroclinic mode Rossby wave. When eddies collide with the Kuroshio Current east of Taiwan, China, the spatial structure and volume transport of the Kuroshio Current shows a significant variation. The upper 600 m of the anticyclonic eddy cannot cross the Kuroshio Current to reach the region west of the Kuroshio Current; rather, these waters flow northward along the eastern side of the Kuroshio Current. The upper water carried by the anticyclonic eddies cannot reach the shelf of the East China Sea (ECS). In contrast, the waters in the upper layer of the cyclonic eddy reach the western side of the Kuroshio Current and then flow northward. The dynamic mechanism analysis shows that the interaction between the Kuroshio Current and the cyclonic (anticyclonic) eddy decrease (increase) the horizontal potential vorticity (PV) gradient, or PV barrier, whereby the cyclonic (anticyclonic) eddy can (cannot) cross the Kuroshio Current. This study implies that the continental shelf could potentially be influenced by cyclonic eddies in the open ocean, which can transport heat and material from the upper open ocean across the Kuroshio Current to the shelf waters.
Key words:    mesoscale eddies|Kuroshio|eddy-Kuroshio interaction|east of Taiwan, China   
Received: 2020-01-14   Revised: 2020-03-16
Tools
PDF (4117 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Yunlong SHI
Articles by Dezhou YANG
Articles by Yijun HE
References:
Andres M, Jan S, Sanford T B, Mensah V, Centurioni L R, Book J W. 2015. Mean structure and variability of the Kuroshio from northeastern Taiwan to southwestern Japan. Oceanography, 28(4):84-95, https://doi.org/10.5670/oceanog.2015.84.
Centurioni L R, Niiler P P, Lee D K. 2004. Observations of inflow of Philippine Sea surface water into the South China Sea through the Luzon Strait.Journal of Physica lO ceanography, 34(1):113-121, https://doi.org/10.1175/1520-0485(2004)034<0113:OOIOPS>2.0.CO;2.
Chang M H, Jan S, Mensah V, Andres M, Rainville L, Yang Y J, Cheng Y C. 2018. Zonal migration and transport variations of the Kuroshio east of Taiwan induced by eddy impingements. Deep Sea Research Part I:Oceanographic Research Papers, 131:1-15, https://doi.org/10.1016/j.dsr.2017.11.006.
Chang Y L, Miyazawa Y, Guo X Y. 2015. Effects of the STCC eddies on the Kuroshio based on the 20-year JCOPE2 reanalysis results. Progress in Oceanography, 135:64-76, https://doi.org/10.1016/j.pocean.2015.04.006.
Chelton D B, Schlax M G, Samelson R M, De Szoeke R A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15):L15606, https://doi.org/10.1029/2007GL030812.
Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216, https://doi.org/10.1016/j.pocean.2011.01.002.
Chelton D B, Schlax M G. 1996. Global observations of oceanic Rossby waves. Science, 272(5259):234-238, https://doi.org/10.1126/science.272.5259.234.
Chern C S, Wang J. 2005. Interactions of mesoscale eddy and western boundary current:a reduced-gravity numerical model study. Journal of Oceanography, 61(2):271-282, https://doi.org/10.1007/s10872-005-0037-z.
Chow C H, Liu Q Y, Xie S P. 2015. Effects of Kuroshio intrusions on the atmosphere northeast of Taiwan Island. Geophysical Research Letters, 42(5):1 465-1 470, https://doi.org/10.1002/2014GL062796.
Dai J, Wang H Z, Zhang W M, An Y Z, Zhang R. 2020. Observed spatiotemporal variation of three-dimensional structure and heat/salt transport of anticyclonic mesoscale eddy in Northwest Pacific. Journal of Oceanology and Limnology, https://doi.org/10.1007/s00343-019-9148-z.
Diaz H F, Folland C K, Manabe T, Parker D. 2002. Workshop on advances in the use of historical marine climate data. WMO Bulletin, 51(4):377-380.
Egbert G D, Erofeeva S Y. 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19(2):183-204, https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2.
Geng W, Xie Q, Chen G X, Liu Q Y, Wang D X. 2018. A threedimensional modeling study on eddy-mean flow interaction between a Gaussian-type anticyclonic eddy and Kuroshio. Journal of Oceanography, 74(1):23-37, https://doi.org/10.1007/s10872-017-0435-z.
Geng W, Xie Q, Chen G X, Zu T T, Wang D X. 2016. Numerical study on the eddy-mean flow interaction between a cyclonic eddy and Kuroshio. Journal of Oceanography, 72(5):727-745, https://doi.org/10.1007/s10872-016-0366-0.
Gill A E, Green J S A, Simmons A J. 1974. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies. Deep Sea Research and Oceanographic Abstracts, 21(7):499-508, https://doi.org/10.1016/0011-7471(74)90010-2.
Hsin Y C, Chiang T L, Wu C R. 2011. Fluctuations of the thermal fronts off northeastern Taiwan. Journal of Geophysical Research:Oceans, 116(C10):C10005, https://doi.org/10.1029/2011JC007066.
Hsueh Y, Chern C S, Wang J. 1993. Blocking of the Kuroshio by the continental shelf northeast of Taiwan. Journal of Geophysical Research:Oceans, 98(C7):12 351-12 359, https://doi.org/10.1029/93JC01075.
Hsueh Y, Wang J, Chern C S. 1992. The intrusion of the Kuroshio across the continental shelf northeast of Taiwan. Journal of Geophysical Research:Oceans, 97(C9):14 323-14 330, https://doi.org/10.1029/92JC01401.
Jan S, Mensah V, Andres M, Chang M H, Yang Y J. 2017. Eddy-Kuroshio interactions:local and remote effects. Journal of Geophysical Research:Oceans, 122(12):9 744-9 764, https://doi.org/10.1002/2017JC013476.
Jan S, Yang Y J, Wang J, Mensah V, Kuo T H, Chio M D, Chern C S, Chang M H, Chien H. 2015. Large variability of the Kuroshio at 23.75°N east of Taiwan. Journal of Geophysical Research:Oceans, 120(3):1 825-1 840, https://doi.org/10.1002/2014JC010614.
Johns W E, Lee T N, Zhang D X, Zantopp R, Liu C T, Yang Y. 2001. The Kuroshio east of Taiwan:moored transport observations from the WOCE PCM-1 array. Journal of Physical Oceanography, 31(4):1 031-1 053, https://doi.org/10.1175/1520-0485(2001)031<1031:TKEOTM>2.0.CO;2.
Kamidaira Y, Uchiyama Y, Mitarai S. 2017. Eddy-induced transport of the Kuroshio warm water around the Ryukyu Islands in the East China Sea. Continental Shelf Research, 143:206-218, https://doi.org/10.1016/j.csr.2016.07.004.
Kuo Y C, Chern C S. 2011. Numerical study on the interactions between a mesoscale eddy and a western boundary current. Journal of Oceanography, 67(3):263-272, https://doi.org/10.1007/s10872-011-0026-3.
Lee I H, Ko D S, Wang Y H, Centurioni L, Wang D P. 2013. The mesoscale eddies and Kuroshio transport in the western North Pacific east of Taiwan from 8-year (2003-2010) model reanalysis. Ocean Dynamics, 63(9-10):1 027-1 040, https://doi.org/10.1007/s10236-013-0643-z.
Liu W, Liu Q Y, Jia Y L. 2004. The Kuroshio transport east of Taiwan and the Sea Surface Height Anomaly from the interior ocean. Journal of Ocean University of China, 3(2):135-140, https://doi.org/10.1007/s11802-004-0023-x.
Pedlosky J. 1987. Geophysical Fluid Dynamics. Springer-Verlag, New York. 710p. https://doi.org/10.1007/978-1-4612-4650-3.
Qiu B, Chen S M, Klein P, Sasaki H, Sasai Y. 2014. Seasonal mesoscale and submesoscale eddy variability along the North Pacific Subtropical Countercurrent. Journal of Physical Oceanography, 44(12):3 079-3 098, https://doi.org/10.1175/JPO-D-14-0071.1.
Qiu B. 1999. Seasonal eddy field modulation of the North Pacific Subtropical Countercurrent:TOPEX/Poseidon observations and theory. Journal of Physical Oceanography, 29(10):2 471-2 486, https://doi.org/10.1175/1520-0485(1999)029<2471:SEFMOT>2.0.CO;2.
Shchepetkin A F, McWilliams J C. 2005. The regional oceanic modeling system (ROMS):a split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Modelling, 9(4):347-404, https://doi.org/10.1016/j.ocemod.2004.08.002.
Sheu W J, Wu C R, Oey L Y. 2010. Blocking and westward passage of eddies in the Luzon Strait. Deep Sea Research Part II:Topical Studies in Oceanography, 57(19-20):1 783-1 791, https://doi.org/10.1016/j.dsr2.2010.04.004.
Shi Y L, Yang D Z, Feng X R, Qi J F, Yang H W, Yin B S. 2018. One possible mechanism for eddy distribution in zonal current with meridional shear. Scientific Reports, 8(1):10 106, https://doi.org/10.1038/s41598-018-28465-z.
Song Y H, Haidvogel D. 1994. A semi-implicit ocean circulation model using a generalized topographyfollowing coordinate system. Journal of Computational Physics, 115(1):228-244, https://doi.org/10.1006/jcph.1994.1189.
Tang T Y, Tai J H, Yang Y J. 2000. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research, 20(4-5):349-371, https://doi.org/10.1016/S0278-4343(99)00076-X.
Vandermeirsch F O, Carton X J, Morel Y G. 2003. Interaction between an eddy and a zonal jet:Part II. Two-and-a-halflayer model. Dynamics of Atmospheres and Oceans, 36(4):271-296, https://doi.org/10.1016/S0377-0265(02)00066-0.
Wang H Z, Liu Q H, Yan H Q, Song B, Zhang W M. 2019. The interactions between surface Kuroshio transport and the eddy field east of Taiwan using satellite altimeter data. Acta Oceanologica Sinica, 38(4):116-125, https://doi.org/10.1007/s13131-019-1417-3.
Waseda T, Mitsudera H, Taguchi B, Yoshikawa Y. 2002. On the eddy-Kuroshio interaction:evolution of the mesoscale eddy. Journal of Geophysical Research:Oceans, 107(C8):3088, https://doi.org/10.1029/2000JC000756.
Wu C R, Chiang T L. 2007. Mesoscale eddies in the northern South China Sea. Deep Sea Research Part II:Topical Studies in Oceanography, 54(14-15):1 575-1 588, https://doi.org/10.1016/j.dsr2.2007.05.008.
Wu C R, Wang Y L, Lin Y F, Chao S Y. 2017. Intrusion of the Kuroshio into the South and East China Seas. Scientific Reports, 7(1):7 895, https://doi.org/10.1038/s41598-017-08206-4.
Yan X M, Zhu X H, Pang C G, Zhang L L. 2016. Effects of mesoscale eddies on the volume transport and branch pattern of the Kuroshio east of Taiwan. Journal of Geophysical Research:Oceans, 121(10):7 683-7 700, https://doi.org/10.1002/2016JC012038.
Yang D Z, Yin B S, Chai F, Feng X R, Xue H J, Gao G D, Yu F. 2018. The onshore intrusion of Kuroshio subsurface water from February to July and a mechanism for the intrusion variation. Progress in Oceanography, 167:97-115, https://doi.org/10.1016/j.pocean.2018.08.004.
Yang D Z, Yin B S, Liu Z L, Bai T, Qi J F, Chen H Y. 2012. Numerical study on the pattern and origins of Kuroshio branches in the bottom water of southern East China Sea in summer. Journal of Geophysical Research:Oceans, 117(C2):C02014, https://doi.org/10.1029/2011JC007528.
Yang D Z, Yin B S, Liu Z L, Feng X R. 2011. Numerical study of the ocean circulation on the East China Sea shelf and a Kuroshio bottom branch northeast of Taiwan in summer. Journal of Geophysical Research:Oceans, 116(C5):C05015, https://doi.org/10.1029/2010JC006777.
Yang G, Wang F, Li Y L, Lin P F. 2013. Mesoscale eddies in the northwestern subtropical Pacific Ocean:statistical characteristics and three-dimensional structures. Journal of Geophysical Research:Oceans, 118(4):1 906-1 925, https://doi.org/10.1002/jgrc.20164.
Yang Y J, Jan S, Chang M H, Wang J, Mensah V, Kuo T H, Tsai C J, Lee C Y, Andres M, Centurioni L R, Tseng Y H, Liang W D, Lai J W. 2015. Mean structure and fluctuations of the Kuroshio East of Taiwan from in situ and remote observations. Oceanography, 28(4):74-83, https://doi.org/10.5670/oceanog.2015.83.
Yang Y, Liu C T, Hu J H, Koga M. 1999. Taiwan Current(Kuroshio) and impinging eddies. Journal of Oceanography,55(5):609-617, https://doi.org/10.1023/A:1007892819134.
Yin Y Q, Lin X P, He R Y, Hou Y J. 2017. Impact of mesoscale eddies on Kuroshio intrusion variability northeast of Taiwan. Journal of Geophysical Research:Oceans, 122(4):3 021-3 040, https://doi.org/10.1002/2016JC012263.
Zhang D X, Lee T N, Johns W E, Liu C T, Zantopp R. 2001. The Kuroshio east of Taiwan:modes of variability and relationship to interior ocean mesoscale eddies. Journal of Physical Oceanography, 31(4):1 054-1 074, https://doi.org/10.1175/1520-0485(2001)031<1054:TKEOTM>2.0.CO;2.
Zheng Q A, Tai C K, Hu J Y, Lin H Y, Zhang R H, Su F C, Yang X F. 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4):365-376, https://doi.org/10.1007/s10872-011-0035-2.
Copyright © Haiyang Xuebao