Cite this paper:
Xue LI, Xiaolong ZHANG, Dongyang FU, Shan LIAO. Strengthening effect of super typhoon Rammasun (2014) on upwelling and cold eddies in the South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(2): 403-419

Strengthening effect of super typhoon Rammasun (2014) on upwelling and cold eddies in the South China Sea

Xue LI1,2, Xiaolong ZHANG1,4, Dongyang FU1,3, Shan LIAO5
1 Guangdong Ocean Remote Sensing and Information Engineering Technology Research Center, Guangdong Ocean University, Zhanjiang 524088, China;
2 State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China;
3 Marine Resources Big Data Center of South China Sea, Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang 524088, China;
4 Meteorological Bureau, Yan'an 716000, China;
5 School of Cybersecurity, Sichuan University, Chengdu 610065, China
Abstract:
Typhoon is one of the frequent natural disasters in coastal regions of China. As shown in many studies, the impact of typhoons on the South China Sea (SCS) should not be overlooked. Super typhoon Rammasun (2014) was studied that formed in the northwestern Pacific, passed through the SCS, then landed in the Leizhou Peninsula. Remote sensing data and model products were used to analyze the spatiotemporal variations of the cold eddies, upwelling, sea surface temperature, mixed layer depth, rainfall, sea surface salinity, suspended sediment concentration, and surface-level anomaly. Results confirm the constant presence of upwelling and cold eddies in the southeast of Hainan (north of the Zhongsha Islands) and the southeast of Vietnam in July. In addition, we found the strengthening effect of super typhoon Rammasun on the upwelling and cold eddies in the SCS. The major reasons for the continuous decrease in sea surface temperature and the slow regaining of seawater temperature were the enhanced upwelling and vertical mixing caused by the typhoon. The increasing of the surface runoff in the Indochina Peninsula was mainly affected by the typhoon, with some contribution for the southeast of Vietnam's cold eddy and upwelling.
Key words:    cold eddies|sea surface temperature (SST)|South China Sea (SCS)|typhoon Rammasun|upwelling   
Received: 2019-09-26   Revised: 2020-02-23
Tools
PDF (13388 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xue LI
Articles by Xiaolong ZHANG
Articles by Dongyang FU
Articles by Shan LIAO
References:
Chai F, Xue H J, Shi M C. 2001a. Hydrographic characteristics and seasonal variation of three anticyclonic eddies on the northern continental shelf of the South China Sea. Oceanographic Collection of China, 13:105-116. (in Chinese with English abstract)
Chai F, Xue H J, Shi M C. 2001b. Formation and distribution of upwelling and downwelling in the South China Sea. Oceanographic Collection of China, 13:117-128. (in Chinese with English abstract)
Chai F, Xue H J, Shi M C. 2001c. Upwelling east of Hainan island. Oceanographic Collection of China, 13:129-137.(in Chinese with English abstract)
Chan J C L, Liu K S, Ching S E, Lai E S T. 2004. Asymmetric distribution of convection associated with tropical cyclones making landfall along the South China coast. Monthly Weather Review, 132(10):2 410-2 420.
Chang S W, Anthes R A. 1978. Numerical simulations of the ocean's nonlinear, baroclinic response to translating hurricanes. Journal of Physical Oceanography, 8(3):468-480.
Chang Y, Chan J W, Huang Y C A, Lin W Q, Lee M A, Lee K T, Liao C H, Wang K Y, Kuo Y C. 2014. Typhoonenhanced upwelling and its influence on fishing activities in the southern East China Sea. International Journal of Remote Sensing, 35(17):6 561-6 572.
Chao S Y, Shaw P T, Wu S Y. 1996. Deep water ventilation in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 43(4):445-466.
Chen B, Wang K, Liu J, Gao F. 2016. The impact of super typhoon Saomai (0608) on the offshore environment near the Yangtze estuary. Earth Science, 41(8):1 402-1 412.(in Chinese with English abstract)
Chen C C, Hsu S C, Jan S, Gong G C. 2015. Episodic events imposed on the seasonal nutrient dynamics of an upwelling system off northeastern Taiwan. Journal of Marine Systems, 141:128-135.
Chen S S, Knaff J A, Marks Jr F D. 2006. Effects of vertical wind shear and storm motion on tropical cyclone rainfall asymmetries deduced from TRMM. Monthly Weather Review, 134(11):3 190-3 208.
Chu P C, Fan C W, Lozano C J, Kerling J L. 1998. An airborne expendable bathythermograph survey of the South China Sea, May 1995. Journal of Geophysical Research, 103(C10):21 637-21 652.
Cui W, Wang W, Zhang J, Yang J G. 2019. Multicore structures and the splitting and merging of eddies in global oceans from satellite altimeter data. Ocean Science, 15(2):413-430.
D'Asaro E A, Sanford T B, Niiler P P, Terrill E J. 2007. Cold wake of hurricane Frances. Geophysical Research Letters, 34(15):L15609.
Dare R A, McBride J L. 2011. Sea surface temperature response to tropical cyclones. Monthly Weather Review, 139(12):3 798-3 808.
Editorial Committee of China Natural Geography. 1979. Physical Geography of China-Ocean Geography, Science Press, Beijing, China. p.6-14. (in Chinese)
Frouin R J, Pan D L, Murakami H. 2014. Ocean remote sensing and monitoring from space. In:Proceedings of SPIE 9261. SPIE, Beijing, China. p.92610U.
Fu D Y, Ding Y Z, Liu D Z, Pan D L. 2009a. Delayed effect of typhoon on marine chlorophyll-a concentration. Journal of Tropical Oceanography, 128(2):15-21. (in Chinese with English abstract)
Fu D Y, Luan H, Pan D L, Zhang Y, Wang L A, Liu D Z, Ding Y Z, Li X. 2016. Impact of two typhoons on the marine environment in the Yellow Sea and East China Sea. Chinese Journal of Oceanology and Limnology, 34(4):871-884.
Fu D Y, Pan D L, Ding Y Z, Huang H Q. 2008. Statistic study of effect of the sea surface temperature caused by typhoon based on remote sensing. In:Proceedings of SPIE 7153, Lidar Remote Sensing for Environmental Monitoring IX. SPIE, Noumea, New Caledonia. p.715312.
Fu D Y, Pan D L, Mao Z H, Ding Y Z, Chen J Y. 2009b. The effects of chlorophyll-a and SST in the South China Sea area by typhoon near last decade. In:Proceedings of SPIE 7478, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX. SPIE, Berlin, Germany. p.74782E.
Fu D Y, Pan D L, Wang D F, Zhang Y, Ding Y Z, Liu D Z. 2014. The analysis of phytoplankton blooms off the Yangtze River Estuary in the spring of 2007. Aquatic Ecosystem Health & Management, 17(3):221-232.
Fu D Y, Zhang X L, Li X, Liu D Z, Yu G, Xu H B. 2020. Changes in the hydrodynamic characteristics of the upper layer of the South China Sea during the period of super typhoon Rammasun (2014). Tellus A:Dynamic Meteorology and Oceanography, 72(1):1-14.
Fumin R, Gleason B, Easterling D. 2002. Typhoon impacts on China's precipitation during 1957-1996. Advances in Atmospheric Sciences, 19(5):943-952.
Ho C R, Zheng Q N, Soong Y S, Kuo N J, Hu J H. 2000. Seasonal variability of sea surface height in the South China Sea observed with TOPEX/Poseidon altimeter data. Journal of Geophysical Research, 105(C6):13 981-13 990.
Kuo N J, Zheng Q N, Ho C R. 2000. Satellite observation of upwelling along the western coast of the South China Sea. Remote Sensing of Environment, 74(3):463-470.
Lau K M, Ding Y H, Wang J T, Johnson R, Keenan T, Cifelli R, Gerlach J, Thiele O, Rickenbach T, Tsay S C, Lin P H. 2000. A report of the field operations and early results of the South China Sea Monsoon Experiment (SCSMEX). Bulletin of the American Meteorological Society, 81(6):1 261-1 270.
Li Q Y, Sun L, Lin S F. 2016. GEM:a dynamic tracking model for mesoscale eddies in the ocean. Ocean Science, 12(6):1 249-1 267.
Lin J R, Tang D L, Lou Q S. 2015. The impact of Super Typhoon Nanmadol on the chlorophyll a, temperature, salinity and dissolved oxygen in the northern South China Sea. Ecological Science, 34(4):9-14. (in Chinese with English abstract)
Liu S S, Sun L, Wu Q Y, Yang Y J. 2017. The responses of cyclonic and anticyclonic eddies to typhoon forcing:the vertical temperature-salinity structure changes associated with the horizontal convergence/divergence. Journal of Geophysical Research, 122(6):4 974-4 989.
Liu Z H, Xu J P, Sun C H, Wu X F. 2014. An upper ocean response to Typhoon Bolaven analyzed with Argo profiling floats. Acta Oceanologica Sinica, 33(11):90-101.
Lonfat M, Marks F D, Chen S S. 2004. Precipitation distribution in tropical cyclones using the tropical rainfall measuring mission (TRMM) microwave imager:a global perspective. Monthly Weather Review, 132(7):1 645-1 660.
Lu Z M, Wang G H, Shang X D. 2016. Response of a preexisting cyclonic ocean eddy to a typhoon. Journal of Physical Oceanography, 46(8):2 403-2 410.
Marra J, Bidigare R R, Dickey T D. 1990. Nutrients and mixing, chlorophyll and phytoplankton growth. Deep Sea Research Part A. Oceanographic Research Papers, 37(1):127-143.
Metzger E J, Hurlburt H E. 1996. Coupled dynamics of the South China Sea, the Sulu Sea, and the Pacific Ocean. Journal of Geophysical Research, 101(C5):12 331-12 352.
Miltenberger A R. 2012. The effects of ocean eddies on tropical cyclones. Massachusetts Institute of Technology, Massachusetts, USA.
Nan F, He Z G, Zhou H, Wang D X. 2011. Three long-lived anticyclonic eddies in the northern South China Sea. Journal of Geophysical Research, 116(C5):C05002.
Pohlmann T. 1987. A three dimensional circulation model of the South China Sea. Elsevier Oceanography Series, 45:245-268.
Potter H. 2018. The cold wake of typhoon Chaba (2010). Deep Sea Research Part I:Oceanographic Research Papers, 140:136-141.
Price J F. 1981. Upper ocean response to a hurricane. Journal of Physical Oceanography, 11(2):153-175.
Rojana-Anawat P, Pradit S, Sukramongkol N, Siriraksophon S. 2001. Temperature, salinity, dissolved oxygen and water masses of Vietnamese waters. In:Proceedings of SEAFDEC Seminar on Fishery Resources in the South China Sea. p.346-355.
Sanford T B, Black P G, Haustein J R, Feeney J W, Forristall G Z, Price J F. 1987. Ocean response to a hurricane. Part I:observations. Journal of Physical Oceanography, 17(11):2 065-2 083.
Schade L R, Emanuel K A. 1999. The ocean's effect on the intensity of tropical cyclones:results from a simple coupled atmosphere-ocean model. Journal of the Atmospheric Sciences, 56(4):642-651.
Shaw P T, Chao S Y. 1994. Surface circulation in the South China Sea. Deep Sea Research Part I:Oceanographic Research Papers, 41(11-12):1 663-1 683.
Shi W, Wang M H. 2012. Satellite views of the Bohai Sea, Yellow Sea, and East China Sea. Progress in Oceanography, 104:30-45.
Stewart R H. 2008. Introduction to Physical Oceanography. Texas A & M University, California. Stramma L, Cornillon P, Price J F. 1986. Satellite observations of sea surface cooling by hurricanes. Journal of Geophysical Research, 91(C4):5 031-5 035.
Subrahmanyam M V. 2015. Impact of typhoon on the northwest Pacific sea surface temperature:a case study of Typhoon Kaemi (2006). Natural Hazards, 78(1):569-582.
Sun L, Yang Y J, Xian T, Lu Z M, Fu Y F. 2010. Strong enhancement of chlorophyll a concentration by a weak typhoon. Marine Ecology Progress Series, 404:39-50.
Sun L, Yang Y J, Xian T, Wang Y, Fu Y F. 2012. Ocean responses to Typhoon Namtheun explored with Argo floats and multiplatform satellites. Atmosphere-Ocean, 50(1):15-26.
Wada A. 2005. Numerical simulations of sea surface cooling by a mixed layer model during the passage of typhoon Rex. Journal of Oceanography, 61(1):41-57.
Wang G H, Su J L, Ding Y H, Chen D K. 2007. Tropical cyclone genesis over the South China Sea. Journal of Marine Systems, 68(3-4):318-326.
Wang Z F, Sun L, Li Q Y, Cheng H. 2019. Two typical merging events of oceanic mesoscale anticyclonic eddies. Ocean Science, 15(6):1 545-1 559.
Wu Z Y, Jiang C B, Chen J, Long Y N, Deng B, Liu X J. 2019. Three-Dimensional temperature field change in the South China Sea during typhoon Kai-tak (1213) based on a fully coupled atmosphere-wave-ocean model. Water, 11(1):140.
Wyrtki K. 1961. Physical Oceanography of the Southeast Asian Waters. Scripps Institution of Oceanography, The University of California, California, USA.
Xie S P, Xie Q, Wang D X, LIU W T. 2003. Summer upwelling in the South China Sea and its role in regional climate variations. Journal of Geophysical Research, 108(C8):3261.
Xu X Z, Qiu Z, Chen H C. 1982. The general descriptions of the horizontal circulation in the South China Sea. In:Editorial Department of Oceans and Lakes ed. Proceedings of the 1980 Symposium on Hydrology and Meteorology of the Chinese Society for Oceanology and Limnology. Science Press, Beijing, China. p.119-127. (in Chinese with English abstract)
Yang H J, Liu Q Y. 1998. The seasonal features of temperature distributions in the upper layer of the South China sea. Oceanologia et Limnologia Sinica, 29(5):501-507. (in Chinese with English abstract)
Yang X X, Tang D L. 2010. Location of sea surface temperature cooling induced by typhoon in the South China Sea. Journal of Tropical Oceanography, 29(4):26-31. (in Chinese with English abstract)
Yang Y J, Sun L, Duan A M, Li Y B, Fu Y F, Yan Y F, Wang Z Q, Xian T. 2012. Impacts of the binary typhoons on upper ocean environments in November 2007. Journal of Applied Remote Sensing, 6(1):063583.
Yue X X, Zhang B, Liu G Q, Li X F, Zhang H, He Y J. 2018. Upper ocean response to typhoon Kalmaegi and Sarika in the South China Sea from multiple-satellite observations and numerical simulations. Remote Sensing, 10(2):348.
Zhang H, Chen D K, Zhou L, Liu X H, Ding T, Zhou B F. 2016. Upper ocean response to Typhoon Kalmaegi (2014). Journal of Geophysical Research, 121(8):6 520-6 535.
Zhang H, Liu X H, Wu R H, Liu F, Yu L H, Shang X D, Qi Y F, Wang Y, Song X S, Xie X H, Yang C H, Tian D, Zhang W Y. 2019. Ocean response to successive typhoons Sarika and Haima (2016) based on data acquired via multiple satellites and moored array. Remote Sensing, 11(20):2360.
Zhang X H, Wang Z L, Hou F H, Yang J Y, Guo X W. 2015. Terrain evolution of china seas and land since the indo-china movement and characteristics of the stepped landform. Chinese Journal of Geophysics, 58(1):54-68.
Zhao H, Tang D L, Wang Y Q. 2008. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Marine Ecology Progress Series, 365:57-65.
Zhao H, Tang D L. 2007. Effect of 1998 El Niño on the distribution of phytoplankton in the South China Sea. Journal of Geophysical Research, 112(C2):C02017.
Zhao Z Y. 2016. Application of discontinuous Galerkin method for two-dimensional suspended sediment transport based on meshes of model. In:Proceedings of 2016 International Conference on Smart Grid and Electrical Automation. IEEE, Zhangjiajie, China. p.71-74.
Zheng G M, Tang D L. 2007. Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Marine Ecology Progress Series, 333:61-74.
Zheng Q N, Tai C K, Hu J Y, Lin H Y, Zhang R H, Su F C, Yang X F. 2011. Satellite altimeter observations of nonlinear Rossby eddy-Kuroshio interaction at the Luzon Strait. Journal of Oceanography, 67(4):365-376.
Zheng Z W, Ho C R, Zheng Q N, Lo Y T, Kuo N J, Gopalakrishnan G. 2010. Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. Journal of Geophysical Research, 115(C9):C09013.
Copyright © Haiyang Xuebao