Cite this paper:
Qiaoning WANG, Xiaodong LI, Tian YAN, Jingjing SONG, Rencheng YU, Mingjiang ZHOU. Laboratory simulation of dissolved oxygen reduction and ammonia nitrogen generation in the decay stage of harmful algae bloom[J]. Journal of Oceanology and Limnology, 2021, 39(2): 500-507

Laboratory simulation of dissolved oxygen reduction and ammonia nitrogen generation in the decay stage of harmful algae bloom

Qiaoning WANG1,5,6, Xiaodong LI1,4, Tian YAN1,2,3, Jingjing SONG1, Rencheng YU1,2,3, Mingjiang ZHOU1
1 Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory of Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 Centre for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
5 CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
6 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
To evaluate how the decay of bloom-forming algae affect the coastal dissolved oxygen, a laboratory simulation was conducted in terms of three typical harmful algae, Alexandrium catenella, Prorocentrum donghaiense, and Skeletonema costatum. Algae of same biomass (55 μg/mL) were conducted in lightproof columns, and the cell density, dissolved oxygen (DO), and ammonia nitrogen of different layers were monitored at certain time series. Results show that the decomposition of algae significantly decreased the DO, and increased the ammonia nitrogen in all layers; and significant deference between different species was observed. The A. catenella treatment showed the lowest DO (average concentration of 3.4 mg/L) and the highest ammonia nitrogen (average concentration of 0.98 mg/L) at the end of test, followed by P. donghaiense; and the S. costatum showed relatively high DO and low ammonia nitrogen due to slow decay rate. Results indicate that decomposition of harmful bloom algae, especially dinoflagellate, would cause significantly DO depletion and toxic ammonia nitrogen increase, which will detrimentally affect both pelagic and benthic ecosystem.
Key words:    harmful algal bloom    hypoxia    Alexandrium catenella    Prorocentrum donghaiense    Skeletonema costatum   
Received: 2019-11-12   Revised: 2020-01-07
Tools
PDF (370 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Qiaoning WANG
Articles by Xiaodong LI
Articles by Tian YAN
Articles by Jingjing SONG
Articles by Rencheng YU
Articles by Mingjiang ZHOU
References:
Branch G M, Bustamante R H, Robinson T B. 2013. Impacts of a ‘black tide’ harmful algal bloom on rocky-shore intertidal communities on the West Coast of South Africa. Harmful Algae, 24:54-64, https://doi.org/10.1016/j.hal.2013.01.005
Chan F, Barth J A, Kroeker K Lubchenco J, Menge B A. 2019. The dynamics and impact of ocean acidification and hypoxia:insights from sustained investigations in the Northern California current large marine ecosystem.Oceanography, 32(3):62-71, https://doi.org/10.5670/oceanog.2019.312.
Chang F H. 2015. Cytotoxic effects of Vicicitus globosus (class dictyochophyceae) and Chattonella marina (class raphidophyceae) on rotifers and other microalgae. Journal of Marine Science and Engineering, 3(2):401-411, https://doi.org/10.3390/jmse3020401.
Chen C C, Gong G C, Shiah F K. 2007a. Hypoxia in the East China Sea:one of the largest coastal low-oxygen areas in the world. Marine Environmental Research, 64(4):399-408, https://doi.org/10.1016/j.marenvres.2007.01.007.
Chen G F, Wang G C, Zhang B Y, Fan X L. 2007b. Morphological and phylogenetic analysis of Skeletonema costatum-like diatoms (Bacillariophyta) from the China Sea. European Journal of Phycology, 42(2):163-175, https://doi.org/10.1080/09670260601149784.
Chen J, Hu Y X, Xu F R, Jin J Y. 2010. Acute toxicity experiments of ammonia-N and sulfide to the juveniles and adults of Meretrix meretrix. Modern Agricultural Sciences and Technology, (3):324-325, 331, https://doi.org/10.3969/j.issn.1007-5739.2010.03.223. (in Chinese with English abstract)
Diaz R J, Rosenberg R. 1995. Marine benthic hypoxia:a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology:An Annual Review, 33:245-303.
Ekau W, Auel H, Pörtner H O, Gilbert D. 2010. Impacts of hypoxia on the structure and processes in pelagic communities (zooplankton, macro-invertebrates and fish).
Biogeosciences, 7(5):1 669-1 699, https://doi.org/10.5194/bg-7-1669-2010.
Elliott D T, Pierson J J, Roman M R. 2013. Copepods and hypoxia in Chesapeake Bay:abundance, vertical position and non-predatory mortality. Journal of Plankton Research, 35(5):1 027-1 034, https://doi.org/10.1093/plankt/fbt049.
Fajardo M, Andrade D, Bonicelli J, Bon M, Gómez G, Riascos J M, Pacheco A S. 2018. Macrobenthic communities in a shallow normoxia to hypoxia gradient in the Humboldt upwelling ecosystem. PLoS One, 13(7):e0200349, https://doi.org/10.1371/journal.pone.0200349.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. 2008. The specification for marine monitoring-Part 4:seawater analysis (GB 17378.4-2007). Standards Press of China.(in Chinese)
Gentien P, Pitcher G, Cembella A, Glibert P. 2003. Global Ecology and Oceanography of Harmful Algal Blooms:Implementation Plan. SCOR, IOC, Baltimore.
Glibert P M, Pitcher G. 2001. Global Ecology and Oceanography of Harmful Algal Blooms:Science Plan:An International Programme Sponsored by the Scientific Committee on Oceanic Research (SCOR) and the Intergovernmental Oceanographic Commission(UNESCO). SCOR, IOC, Baltimore. 86p.
Gu H X, Shang Y Y, Clements J, Dupont S, Wang T, Wei S S, Wang X H, Chen J F, Huang W, Hu M H, Wang Y J. 2019. Hypoxia aggravates the effects of ocean acidification on the physiological energetics of the blue mussel Mytilus edulis. Marine Pollution Bulletin, 149:110538, https://doi.org/10.1016/j.marpolbul.2019.110538.
Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms:I. Cyclotella Nana Hustedt, and Detonula Confervacea (Cleve) Gran. Canadian Journal of Microbiology, 8(2):229-239, https://doi.org/10.1139/m62-029.
Guo W. 2013. Sedimentary Records of Hypoxia Status in the Red-Tide Zone of the East China Sea. Institute of Oceanology, Chinese Academy of Sciences, Qingdao. (in Chinese)
Hansen G, Moestrup Ø. 1998. Fine-structural characterization of Alexandrium catenella (Dinophyceae) with special emphasis on the flagellar apparatus. European Journal of Phycology, 33(4):281-291, https://doi.org/10.1080/09670269810001736783.
Hartmann V A, Briggs K, Shivarudrappa S, Yeager K M, Diaz R. 2009. The impact of hypoxia on bioturbation rates in the Louisiana continental shelf, Northern Gulf of Mexico. In:Proceedings of OCEANS 2009. IEEE, Biloxi, USA. p.1-9, https://doi.org/10.23919/OCEANS.2009.5422171.
He B Y, Dai M H, Zhai W D, Guo X H, Wang L F. 2014. Hypoxia in the upper reaches of the Pearl River Estuary and its maintenance mechanisms:a synthesis based on multiple year observations during 2000-2008. Marine Chemistry, 167:13-24, https://doi.org/10.1016/j.marchem.2014.07.003.
Howarth R W, Marino R. 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems:Evolving views over three decades. Limnology and Oceanography, 51(1):364-376, https://doi.org/10.4319/lo.2006.51.1_part_2.0364.
Jessen C, Bednarz V N, Rix L Teichberg M, Wild C. 2015. Marine eutrophication. In:Armon R H, Hänninen O eds. Environmental Indicators. Springer, Dordrecht. p.177-203, https://doi.org/10.1007/978-94-017-9499-2_11.
Kang Z J, Yu R C, Kong F Z, Wang Y F, Gao Y, Chen J H, Guo W, Zhou M J. 2016. Records of bulk organic matter and plant pigments in sediment of the "red-tide zone" adjacent to the Changjiang River estuary. Chinese Journal of Oceanology and Limnology, 34(5):915-927, https://doi.org/10.1007/s00343-016-4313-0.
Karlson K, Rosenberg R, Bonsdorff E. 2002. Temporal and spatial large-scale effects of eutrophication and oxygen deficiency on benthic fauna in Scandinavian and Baltic waters-a review. Oceanography and Marine Biology:An Annual Review, Aberdeen University Press/Allen & Unwin, 40:427-489.
Kimmel D G, Boicourt W C, Pierson J J, Roman M R, Zhang X S. 2010. The vertical distribution and diel variability of mesozooplankton biomass, abundance and size in response to hypoxia in the northern Gulf of Mexico USA. Journal of Plankton Research, 32(8):1 185-1 202, https://doi.org/10.1093/plankt/fbp136.
Kohn N P, Word J Q, Niyogi D K, Dillon T, Moore D W. 1994. Acute toxicity of ammonia to four species of marine amphipod. Marine Environmental Research, 38(1):1-15, https://doi.org/10.1016/0141-1136(94)90042-6.
Lai K P, Li J W, Tse A C K, Cheung A, Wang S, Chan T F, Kong R Y C, Wu R S S. 2016. Transcriptomic responses of marine medaka's ovary to hypoxia. Aquatic Toxicology, 177:476-483, https://doi.org/10.1016/j.aquatox.2016.06.023. Lewis N I, Xu W B, Jericho S K, Kreuzer H J, Jericho M H, Cembella A D. 2006. Swimming speed of three species of Alexandrium (Dinophyceae) as determined by digital inline holography. Phycologia, 45(1):61-70, https://doi.org/10.2216/04-59.1.
Li X D, Yan T, Lin J N, Yu R C, Zhou M J. 2017. Detrimental impacts of the dinoflagellate Karenia mikimotoi in Fujian coastal waters on typical marine organisms. Harmful Algae, 61:1-12, https://doi.org/10.1016/j.hal.2016.11.011.
Li X L, Shi H M, Xia H Y, Zhou Y P, Qiu Y W. 2014. Seasonal hypoxia and its potential forming mechanisms in the Mirs Bay, the northern South China Sea. Continental Shelf Research, 80:1-7, https://doi.org/10.1016/j.csr.2014.03.003.
Li X X, Bianchi T S, Yang Z S, Osterman L E, Allison M A, DiMarco S F, Yang G P. 2011. Historical trends of hypoxia in Changjiang River estuary:applications of chemical biomarkers and microfossils. Journal of Marine Systems, 86(3-4):57-68, https://doi.org/10.1016/j.jmarsys.2011.02.003.
Liang Y B. 2012. Investigation and Evaluation of Red Tide in China Ocean. China Ocean Press, Beijing. (in Chinese)
Lu D D, Goebel J, Qi Y Z, Zou J Z, Han X T, Gao Y H, Li Y G. 2005. Morphological and genetic study of Prorocentrum donghaiense Lu from the East China Sea, and comparison with some related Prorocentrum species. Harmful Algae, 4(3):493-505, https://doi.org/10.1016/j.hal.2004.08.015.
Lučić D, Hure M, Bobanović-Ćolić S, Njire J, Vidjak O, Onofri I, Gangai Zovko B, Batistić M. 2019. The effect of temperature change and oxygen reduction on zooplankton composition and vertical distribution in a semi-enclosed marine system. Marine Biology Research, 15(4-6):325-342, https://doi.org/10.1080/17451000.2019.1655161.
Luo L, Li S Y, Li H M. 2005. Characteristics of dissolved oxygen and its affecting factors in the Pearl River Estuary in summer. Acta Scientiarum Naturalium Universitatis Sunyatseni, 44(6):118-122, https://doi.org/10.3321/j.issn:0529-6579.2005.06.031. (in Chinese with English abstract)
Marcus N H. 2001. Zooplankton:responses to and consequences of hypoxia. In:Rabalais N N, Turner R E eds. Coastal Hypoxia:Consequences for Living Resources and Ecosystems. American Geophysical Union, Washington, https://doi.org/10.1029/CE058p0049.
Micheli F. 1999. Eutrophication, fisheries, and consumerresource dynamics in marine pelagic ecosystems. Science, 285(5432):1 396-1 398, https://doi.org/10.1126/science.285.5432.1396.
Morrison J A, Gamble J C, Napier I R. 1991. Mass mortality of herring eggs associated with a sedimenting diatom bloom. ICES Journal of Marine Science, 48(2):237-245, https://doi.org/10.1093/icesjms/48.2.237.
O'Boyle S, McDermott G, Silke J, Cusack C. 2016. Potential impact of an exceptional bloom of Karenia mikimotoi on dissolved oxygen levels in waters off western Ireland. Harmful Algae, 53:77-85, https://doi.org/10.1016/j.hal.2015.11.014.
Reddy-Lopata K, Auerswald L, Cook P. 2006. Ammonia toxicity and its effect on the growth of the South African abalone Haliotis midae Linnaeus. Aquaculture, 261(2):678-687, https://doi.org/10.1016/j.aquaculture.2006.06. 020.
Reise K, van Beusekom J E E. 2008. Interactive effects of global and regional change on a coastal ecosystem. Helgoland Marine Research, 62(1):85-91, https://doi.org/10.1007/s10152-007-0102-7.
Riedel B, Diaz R, Rosenberg R, Stachowitsch M. 2016. The Ecological Consequences of Marine Hypoxia:from Behavioural to Ecosystem Responses. Oxford University Press, Oxford. p.175-194.
Samuel C L, Yolanda H S N, Emilio L C S, Pedro C H, Felipe De Jesús A V, María Teresa S. 2019. Survival and respiration of green abalone (Haliotis fulgens) facing very short-term marine environmental extremes. Marine and Freshwater Behaviour and Physiology, 52(1):1-15, https://doi.org/10.1080/10236244.2019.1607734.
Shi X Y, Wang X L, Lu R, Sun X. 2005. Distribution of dissolved oxygen and pH in frequent HAB area of the East China Sea in spring 2002. Oceanologia et Limnologia Sinica, 36(5):404-412, https://doi.org/10.3321/j.issn:0029-814X.2005.05.003. (in Chinese with English abstract)
Shivarudrappa S K, Rakocinski C F, Briggs K B. 2019. Vertical distribution of macrobenthos in hypoxia-affected sediments of the Northern Gulf of Mexico:applying functional metrics. Estuaries and Coasts, 42(1):250-263, https://doi.org/10.1007/s12237-018-0446-z.
Shivarudrappa S, Briggs K, Hartmann V. 2009. Benthic community response to hypoxia:baseline data. In:Proceedings of OCEANS 2009. IEEE, Biloxi, USA. p.1-6, https://doi.org/10.23919/OCEANS.2009.5422233.
Small D P, Bennett R S, Bishop C D. 2014. The roles of oxygen and ammonia in the symbiotic relationship between the spotted salamander Ambystoma maculatum and the green alga Oophila amblystomatis during embryonic development. Symbiosis, 64(1):1-10, https://doi.org/10.1007/s13199-014-0297-8.
Stalder L C, Marcus N H. 1997. Zooplankton responses to hypoxia:behavioral patterns and survival of three species of calanoid copepods. Marine Biology, 127(4):599-607, https://doi.org/10.1007/s002270050050.
Trainer V L, Pitcher G C, Reguera B, Smayda T J. 2010. The distribution and impacts of harmful algal bloom species in eastern boundary upwelling systems. Progress in Oceanography, 85(1-2):33-52, https://doi.org/10.1016/j.pocean.2010.02.003.
Vaquer-Sunyer R, Duarte C M. 2008. Thresholds of hypoxia for marine biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 105(40):15 452-15 457, https://doi.org/10.1073/pnas.0803833105.
Wang B D, Wei Q S, Chen J F, Xie L P. 2012a. Annual cycle of hypoxia off the Changjiang (Yangtze River) Estuary. Marine Environmental Research, 77:1-5, https://doi.org/10.1016/j.marenvres.2011.12.007.
Wang C, Yu R C, Zhou M J. 2012b. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species. Harmful Algae, 16:12-19, https://doi.org/10.1016/j.hal.2011.12.007.
Wang W Q, Jiang L X, Yang N, Li J, Wang R J. 2007. The effect of ammonia-N on immune activity of Ruditapes philippinarum. Marine Science, 31(1):23-27, https://doi.org/10.3969/j.issn.1000-3096.2007.01.005. (in Chinese with English abstract)
Wei H, He Y C, Li Q J, Liu Z Y, Wang H T. 2007. Summer hypoxia adjacent to the Changjiang Estuary. Journal of Marine Systems, 67(3-4):292-303, https://doi.org/10.1016/j.jmarsys.2006.04.014.
Yang L F, Chen L L, Li X J, Zhou Z Q, Liu B, Song B, Li B J, Li B Q. 2019. Effect of seasonal hypoxia on macrobenthic communities in the Muping Marine Ranch, Yantai, China. Biodiversity Science, 27(2):200-210, https://doi.org/10.17520/biods.2019012. (in Chinese with English abstract)
Yu R C, Lü S H, Liang Y B. 2018. Harmful algal blooms in the coastal waters of China. In:Glibert P M, Berdalet E, Burford M A, Pitcher G C, Zhou M J eds. Global Ecology and Oceanography of Harmful Algal Blooms. Springer, Cham. p.309-316, https://doi.org/10.1007/978-3-319-70069-4_15.
Zhang H, Li Y F, Tang C, Zou T, Yu J, Guo K. 2016. Spatial characteristics and formation mechanisms of bottom hypoxia zone in the Bohai Sea during summer. Chinese Science Bulletin, 61(14):1 612-1 620, https://doi.org/10.1360/N972015-00915. (in Chinese with English abstract)
Zhao H D, Kao S J, Zhai W D, Zang K P, Zheng N, Xu X M, Huo C, Wang J Y. 2017. Effects of stratification, organic matter remineralization and bathymetry on summertime oxygen distribution in the Bohai Sea, China. Continental Shelf Research, 134:15-25, https://doi.org/10.1016/j.csr.2016.12.004.
Zheng J J, Gao S, Liu G M, Wang H, Zhu X M. 2016. Modeling the impact of river discharge and wind on the hypoxia off Yangtze Estuary. Natural Hazards and Earth System Sciences, 16(12):2 559-2 576, https://doi.org/10.5194/nhess-16-2559-2016.
Zhu L M, Gao N, Wang R F, Zhang L. 2018. Proteomic and metabolomic analysis of marine medaka (Oryzias melastigma) after acute ammonia exposure.Ecotoxicology, 27(3):267-277, https://doi.org/10.1007/s10646-017-1892-2.

Related Articles:
1.KANG Zhenjun, YU Rencheng, KONG Fanzhou, WANG Yunfeng, GAO Yan, CHEN Jianhua, GUO Wei, ZHOU Mingjiang.Records of bulk organic matter and plant pigments in sediment of the “red-tide zone” adjacent to the Changjiang River estuary[J]. Journal of Oceanology and Limnology, 2016,34(5): 915-927
2.LI Junlei, SUN Xiaoxia.Effects of different phosphorus concentrations and N/P ratios on the growth and photosynthetic characteristics of Skeletonema costatum and Prorocentrum donghaiense[J]. Journal of Oceanology and Limnology, 2016,34(6): 1158-1172
Copyright © Haiyang Xuebao