Cite this paper:
Olga L. GASKOVA, Vera D. STRAKHOVENKO, Nadezhda I. ERMOLAEVA, Eugene Yu. ZARUBINA, Ekaterina A. OVDINA. A simple method to model the reduced environment of lake bottom sapropel formation[J]. Journal of Oceanology and Limnology, 2017, 35(4): 956-966

A simple method to model the reduced environment of lake bottom sapropel formation

Olga L. GASKOVA1,2, Vera D. STRAKHOVENKO1,2, Nadezhda I. ERMOLAEVA3, Eugene Yu. ZARUBINA3, Ekaterina A. OVDINA1,2
1 V. S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia;
2 Novosibirsk State University, Novosibirsk 630090, Russia;
3 Institute for Water and Environmental Problems, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia
Abstract:
The Kambala and Barchin brackish lakes (Baraba steppe, southern West Siberia) contain an organic-rich sapropel layer that was formed in oxygen-depleted waters. We measured the bulk sediment elemental composition, the water chemistry and determined the mineralogical composition and predominant biota species (Diatoms and Cyanobacteria in phytoplankton community respectively) in the lakes. The result indicates that the first lake has a siliceous type of sapropel and the second a carbonaceous one. A computer thermodynamic model was developed for chemical interaction in water-bottom sediment systems of the Kambala and Barchin Lakes. The surface sodium bicarbonate waters are supersaturated with respect to calcite, magnesite (or low Mg-calcite), quartz and chlorite with minor strontianite, apatite and goethite (pH 8.9-9.3, Eh 0.3 V). Nevertheless, it is shown that during sapropel deposition, deep silt waters should be anoxic (Eh<0 V). The virtual component CH2O has been used to create an anoxic environment suitable for pyrite formation due to the biotic community impact and abiotic reduction. Thermodynamic calculation has shown that silt water is not necessarily euxinic (anoxic and sulfidic). Depending on Eh, sulfate sulfur can dominate in solution, causing the formation of gypsum together with pyrite. An attempt was made to find a reason for solution supersaturation with respect to Ca and Mg ions due to their complexation with humic acids.
Key words:    brackish lakes|sapropel sediments|mineral composition|silica|calcite|thermodynamic calculations   
Received: 2015-12-18   Revised: 2016-02-14
Tools
PDF (238 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Olga L. GASKOVA
Articles by Vera D. STRAKHOVENKO
Articles by Nadezhda I. ERMOLAEVA
Articles by Eugene Yu. ZARUBINA
Articles by Ekaterina A. OVDINA
References:
Berner R A, Westrich J T, Graber R, Smith J, Martens C S. 1978. Inhibition of aragonite precipitation from supersaturated seawater; a laboratory and field study. Am. J. Sci., 278(6):816-837.
Bilan M I, Usov A I. 2001. Polysaccharides of calcareous algae and their effect on the calcification process. Russian Journal of Bioorganic Chemistry, 27(1):2-16, http://dx.doi.org/10.1023/A:1009584516443.
Borzenko S V, Zamana L V. 2008. Sulfate reduction as factor of the formation of soda waters in Lake Doroninskoe, eastern Transbaikalia. Vestn. Tomsk. Gos. Univ., 312:188-193.
Calas G, McMillan P F, Bernier-Latmani R. 2015. Environmental mineralogy:new challenges, new materials. Elements, 11(4):247-252.
Chen T, Neville A, Yuan M D. 2005. Assessing the effect of Mg2+ on CaCO3 scale formation-bulk precipitation and surface deposition. Journal of Crystal Growth, 275(1-2):e1 341-e1 347, http://dx.doi.org/10.1016/j.jcrysgro.2004.11.169.
Diez-Ercilla M, Sá nchez-España J, Yusta I, Wendt-Potthoff K, Koschorreck M. 2014. Formation of biogenic sulphides in the water column of an acidic pit lake:biogeochemical controls and effects on trace metal dynamics. Biogeochemistry, 121(3):519-536, http://dx.doi.org/10.1007%2Fs10533-014-0020-0.
Gallagher K L, Kading T J, Braissant O, Dupraz C, Visscher P T. 2012. Inside the alkalinity engine:the role of electron donors in the organomineralization potential of sulfatereducing bacteria. Geobiology, 10(6):518-530, http://dx.doi.org/10.1111/j.1472-4669.2012.00342.x.
Gas'kova O L, Isupov V P, Vladimirov A G, Shvartsev S L, Kolpakova M N. 2015. Thermodynamic modeling of the behavior of uranium and arsenic in mineralized ShaazgaiNuur Lake (Northwest Mongolia). Doklady Earth Sciences, 465(1):1 159-1 163, http://dx.doi.org/10.1134/S1028334X15110094.
Gas'kova O L, Sklyarova O A. 2013. Influence of natural organic acids on the Mg/Ca ratio in the bottom sediments of highly mineralized lakes. Russian Geology and Geophysics, 54(6):637-645, http://dx.doi.org/10.1016/j.rgg.2013.04.013.
Gas'kova O L, Solotchina E P, Sklyarova O A. 2011. Reconstruction of solution chemistry evolution based on the sedimentary record of salt lakes in the Olkhon region. Russian Geology and Geophysics, 52(5):548-554, http://dx.doi.org/10.1016/j.rgg.2011.04.007.
Hoch A R, Reddy M M, Aiken G R. 2000. Calcite crystal growth inhibition by humic substances with emphasis on hydrophobic acids from the Florida Everglades. Geochim. Cosmochim. Acta, 64(1):61-72.
Lash G G, Blood D R. 2014. Organic matter accumulation, redox, and diagenetic history of the Marcellus Formation, southwestern Pennsylvania, Appalachian basin. Marine and Petroleum Geology, 57:244-263, http://dx.doi.org/10.1016/j.marpetgeo.2014.06.001.
Lein A Yu.; Makkaveev P N, Savvichev A S, Kravchishina M D, Belyaev N A, Dara O M, Ponyaev M S, Zakharova E E, Rozanov A G, Ivanov M V, Flin M V. 2011. Transformation of suspended particulate matter into sediment in the Kara Sea in September of 2011. Oceanology, 53(5):570-606, http://link.springer.com/article/10.1134%2FS0001437013050081.
Leonova G A, Bobrov V A. 2012. Geochemical Role of Plankton of the Continental Water Bodies of Siberia in Concentrating and Biosedimentation of Microelements. Academic Publishing House "GEO", Novosibirsk, 314p.
Moiseenko T I, Gashkina N A, Dinu M I, Kremleva T A, Khoroshavin V Y. 2013a. Aquatic geochemistry of small lakes:effects of environment changes. Geochem. Int., 51(13):1 031-1 148, http://dx.doi.org/10.1134%2FS0016702913130028#/page-1.
Moiseenko T I, Gashkina N A, Kudryavtseva L P, Bylinyak Y A, Sandimirov S S. 2006. Zonal features of the formation of water chemistry in small lakes in European Russia. Water Resources, 33(2):144-162, http://dx.doi.org/10.1134/S0097807806020047.
Moiseenko T I, Skjelkvåle B L, Gashkina N A, Shalabodov A D, Khoroshavin V Y. 2013b. Water chemistry in small lakes along a transect from boreal to arid ecoregions in European Russia:effects of air pollution and climate change. Applied Geochemistry, 28:69-79, http://dx.doi.org/10.1016/j.apgeochem.2012.10.019.
Plancq J, Grossi V, Pittet B, Huguet C, Rosell-Melé A, Mattioli E. 2015. Multi-proxy constraints on sapropel formation during the late Pliocene of central Mediterranean(southwest Sicily). Earth and Planetary Science Letters, 420:30-44, http://dx.doi.org/10.1016/j.epsl.2015.03.031.
Reed D C, Slomp C P, de Lange G J. 2011. A quantitative reconstruction of organic matter and nutrient diagenesis in Mediterranean Sea sediments over the Holocene. Geochim. Cosmochim. Acta, 75(19):5 540-5 558, http://dx.doi.org/10.1016/j.gca.2011.07.002.
Römkens P F A M, Dolfing J. 1998. Effect of Ca on the solubility and molecular size distribution of DOC and Cu binding in soil solution samples. Environ. Sci. Technol., 32(3):363-369.
Shvarov Y V. 2008. HCh:new potentialities for the thermodynamic simulation of geochemical systems offered by Windows. Geochem. Int., 46(8):834-839, http://dx.doi.org/10.1134/S0016702908080089.
Strakhovenko V D, Ovdina E A, Ermolaeva N I, Zarubina E Yu, Taran O P, Boltenkov V V. 2015. Assessing the role of organic matter in precipitation of authigenic minerals in sediments of the Barchin and Kambala Lakes (Baraba Steppe). Water-Rock Interaction:Geological Evolution. In:Proceedings of the Second Russian Scientific Conference with International Participation. Vladivostok, p.616-619. (in Russian)
Strakhovenko V D, Shcherbov B L, Malikova I N, Vosel Y S. 2010. The regularities of distribution of radionuclides and reare-earth elements in bottom sediments of Siberian lakes. Russian Geology and Geophysics, 51(11):1 167-1 178.
Strakhovenko V D, Taran O P, Ermolaeva N I. 2014. Geochemical characteristics of the sapropel sediments of small lakes in the Ob'-Irtysh interfluve. Russian Geology and Geophysics, 55(10):1 160-1 169, http://dx.doi.org/10.1016/j.rgg.2014.09.002.
Strakhovenko V D. 2011. Geochemistry of Bottom Sediments in the Small Continental Lakes of Siberia. Extended Abstract Doctoral (Geol.-Mineral.) Dissertation. IGM SORAN, Novosibirsk (in Russian), 32p.
Tachikawa K, Vidal L, Cornuault M, Garcia M, Pothin A, Sonzogni C, Bard E, Menot G, Revel M. 2015. Eastern Mediterranean Sea circulation inferred from the conditions of S1 sapropel deposition. Climate of the Past, 11(6):855-867.
Yan J P, Hinderer M, Einsele G. 2002. Geochemical evolution of closed-basin lakes:general model and application to Lakes Qinghai and Turkana. Sedimentary Geology, 148(1-2):105-122.
Yermolaeva N I, Zarubina E Y, Romanov R E, Leonova G A, Puzanov A V. 2016. Hydrobiological conditions of sapropel formation in Lakes in the South of Western Siberia. Water Resources, 43(1):129-140.
Zavarzin G A. 2006. Does evolution make the essence of biology? Herald of the Russian Academy of Sciences, 76(3):292-302.
Copyright © Haiyang Xuebao