Cite this paper:
GONG Yanhui, MA Sanmei, WANG Yongfei, XU Yongkai, SUN Aijun, ZHANG Yun, HU Yunfeng. Characterization of a novel deep-sea microbial esterase EstC10 and its use in the generation of (R)-methyl 2-chloropropionate[J]. Journal of Oceanology and Limnology, 2018, 36(2): 473-482

Characterization of a novel deep-sea microbial esterase EstC10 and its use in the generation of (R)-methyl 2-chloropropionate

GONG Yanhui3, MA Sanmei3, WANG Yongfei3, XU Yongkai4, SUN Aijun1,2, ZHANG Yun1,2, HU Yunfeng1,2,5
1 Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3 Department of Biotechnology, Jinan University, Guangzhou 510632, China;
4 Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China;
5 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China
Abstract:
A novel esterase EstC10 from Bacillus sp. CX01 isolated from the deep sea of the Western Pacific Ocean and the functionalities of EstC10 was characterized. At present, the reports about the kinetic resolution of racemic methyl 2-chloropropionate were quite rare. So we developed deep-sea microbial esterase EstC10 as a novel biocatalyst in the kinetic resolution of racemic methyl 2-chloropropionate and generate (R)-methyl 2-chloropropionate with high enantiomeric excess (>99%) after the optimization of process parameters such as pH, temperature, organic co-solvents, surfactants, substrate concentration and reaction time. Notably, the optimal substrate concentration (80 mmol/L) of esterase EstC10 was higher than the kinetic resolution of another esterase, Est12-7 (50 mmol/L). The novel microbial esterase EstC10 identified from the deep sea was a promising green biocatalyst in the generation of (R)-methyl 2-chloropropionate as well of many other valuable chiral chemicals in industry.
Key words:    biocatalysis|deep-sea microorganisms|novel esterase|kinetic resolution|(R)-methyl 2-chloropropionate   
Received: 2016-11-16   Revised:
Tools
PDF (477 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by GONG Yanhui
Articles by MA Sanmei
Articles by WANG Yongfei
Articles by XU Yongkai
Articles by SUN Aijun
Articles by ZHANG Yun
Articles by HU Yunfeng
References:
Arpigny J L, Jaeger K E. 1999. Bacterial lipolytic enzymes:classification and properties. Biochem. J., 343:177-183.
Ballesteros A, Bernabé M, Cruzado C, Martín-Lomas M, Otero C. 1989. Regioselective deacylation of 1,6-anhydro-β-D-galactopyranose derivatives catalyzed by soluble and immobilized lipases. Tetrahedron, 45(22):7 077-7 082, https://doi.org/10.1016/S0040-4020(01)89175-4.
Breuer M, Ditrich K, Habicher T, Hauer B, Keßeler M, Stürmer R, Zelinski T. 2004. Industrial methods for the production of optically active intermediates. Angew. Chem. Int. Ed.Engl., 43(7):788-824.
Bui V P, Hansen T V, Stenstrøm Y, Hudlicky T. 2000. Direct biocatalytic synthesis of functionalized catechols:a green alternative to traditional methods with high effective mass yield. Green Chemistry, 2(6):263-265.
Cambou B, Klibanov A M. 1984. Comparison of different strategies for the lipase-catalyzed preparative resolution of racemic acids and alcohols:asymmetric hydrolysis, esterification, and transesterification. Biotechnology and Bioengineering, 26(12):1 449-1 454.
Cao Y Y, Deng D, Sun A J, Zhang Y, Hu Y F. 2016. Functional characterization of a novel marine microbial esterase and its utilization in the enantioselective preparation of (R)-methyl 2-chloropropionate. Appl. Biochem. Biotechnol., 180(2):210-227.
Carta G, Gainer J L, Benton A H. 1991. Enzymatic synthesis of esters using an immobilized lipase. Biotechnology and Bioengineering, 37(11):1 004-1 009.
Chen C S, Fujimoto Y, Girdaukas G, Sih C J. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers.J. Am. Chem. Soc., 104(25):7 294-7 299.
Chu X M, He H Z, Guo C Q, Sun B L. 2008. Identification of two novel esterases from a marine metagenomic library derived from South China Sea. Appl. Microbiol.Biotechnol., 80(4):615-625.
Colton I J, Ahmed S N, Kazlauskas R J. 1995. A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J.Org. Chem., 60(1):212-217.
Dahod S K, Siuta-Mangano P. 1987. Carbon tetrachloridepromoted stereo selective hydrolysis of methyl-2-chloropropionate by lipase. Biotechnology and Bioengineering, 30(8):995-999.
Deng D, Zhang Y, Sun A J, Liang J Y, Hu Y F. 2016. Functional characterization of a novel marine microbial GDSL lipase and its utilization in the resolution of (±)-1-phenylethanol.Appl. Biochem. Biotechnol., 179(1):75-93.
Elend C, Schmeisser C, Leggewie C, Babiak P, Carballeira J D, Steele H L, Reymond J L, Jaeger K E, Streit W R. 2006. Isolation and biochemical characterization of two novel metagenome-derived esterases. Appl. Environ.Microbiol., 72(5):3 637-3 645.
Jiang X W, Xu X W, Huo Y Y, Wu Y H, Zhu X F, Zhang X Q, Wu M. 2012. Identification and characterization of novel esterases from a deep-sea sediment metagenome. Arch.Microbiol., 194(3):207-214.
Koeller M K, Wong C H. 2001. Enzymes for chemical synthesis. Nature, 409(6817):232-240.
Köhler J E H, Hohla M, Richters M, König W A. 1994. A molecular-dynamics simulation of the complex formation between methyl (R)/(S)-2-chloropropionate and heptakis(3-O-acetyl-2, 6-di-O-pentyl)-β-cyclodextrin. Berichte der deutschen chemischen Gesellschaft, 127(1):119-126.
Kurata A, Kurihara T, Kamachi H, Esaki A N. 2004.Asymmetric reduction of 2-chloroacrylic acid to (S)-2-chloropropionic acid by a novel reductase from Burkholderia sp. WS. Tetrahedron:Asymmetry, 15(18):2 837-2 839, https://doi.org/10.1016/j.tetasy.2004.06.035.
Li Z Y, Rong Z, Wang Z, Huo Y Y, Meng F X, Wang C S, Cui H L, Xu X W. 2016. Cloning, expression and characterization of a novel esterase (E29) from a marine bacterium Altererythrobacter luteolus SW109T. Microbiology, 43(5):1 051-1 059, https://doi.org/10.13344/j.microbiol.china.150974. (in Chinese with English abstract)
Liang J Y, Sun A J, Zhang Y, Deng D, Wang Y F, Ma S M, Hu Y F. 2016a. Functional characterization of a novel microbial esterase identified from the Indian Ocean and its use in the stereoselective preparation of (R)-methyl mandelate. Chin. J. Oceanol. Limnol., 34(6):1 269-1 277.
Liang J Y, Zhang Y, Sun A J, Deng D, Hu Y F. 2016b. Enantioselective resolution of (±)-1-phenylethanol and(±)-1-phenylethyl acetate by a novel esterase from Bacillus sp. SCSIO 15121. Appl. Biochem. Biotechnol., 178(3):558-575.
Ma B D, Yu H L, Pan J, Li J Y, Ju X, Xu J H. 2013. A thermostable and organic-solvent tolerant esterase from Pseudomonas putida ECU1011:catalytic properties and performance in kinetic resolution of α-hydroxy acids. Bioresource Technology, 133:354-360, https://doi.org/10.1016/j.biortech.2013.01.089.
Moore J C, Pollard D J, Kosjek B, Devine P N. 2007. Advances in the enzymatic reduction of ketones. Acc. Chem. Res., 40(12):1 412-1 419.
Nardini M, Dijkstra B W. 1999. α/β Hydrolase fold enzymes:the family keeps growing. Current Opinion in Structural Biology, 9(6):732-737, https://doi.org/10.1016/S0959-440X(99)00037-8.
Otero C, Pastor E, Ballesteros A. 1990. Synthesis of monobutyrylglycerol by transesterification with soluble and immobilized lipases. Appl. Biochem. Biotechnol., 26(1):36-44.
Park H J, Jeon H J, Kang S G, Lee J H, Lee S A, Kim H K. 2007. Functional expression and refolding of new alkaline esterase, EM2L8 from deep-sea sediment metagenome. Protein. Expr. Purif., 52(2):340-347, https://doi.org/10.1016/j.pep.2006.10.010.
Rao L, Xue Y F, Zheng Y Y, Lu J R, Ma Y H. 2013. A novel alkaliphilic bacillus esterase belongs to the 13th bacterial lipolytic enzyme family. PLoS One, 8(4):e60645, https://doi.org/10.1371/journal.pone.0060645.
Rozeboom H J, Godinho L F, Nardini M, Quax W J, Dijkstra B W. 2014. Crystal structures of two Bacillus carboxylesterases with different enantioselectivities.Biochim. Biophys. Acta, 1844(3):567-575, https://doi.org/10.1016/j.bbapap.2014.01.003.
Schulze B, Wubbolts M G. 1999. Biocatalysis for industrial production of fine chemicals. Current Opinion in Biotechnology, 10(6):609-615, https://doi.org/10.1016/S0958-1669(99)00042-7.
Shen G Y. 2005. 2-chloropropionic acid. Fine and Specialty Chemicals, 13(13):19-20, 30. (in Chinese with English abstract)
Wang M, Bao W J, Wang J, Wang K, Xu J J, Chen H Y, Xia X H. 2014. A green approach to the synthesis of novel "Desert rose stone" -like nanobiocatalytic system with excellent enzyme activity and stability. Sci. Rep., 4:6 606.
Xu F X, Chen S Y, Xu G, Wu J P, Yang L R. 2015. Discovery and expression of a Pseudomonas sp. esterase as a novel biocatalyst for the efficient biosynthesis of a chiral intermediate of pregabalin. Biotechnology and Bioprocess Engineering, 20(3):473-487.
Zhang H, Li F C, Chen H X, Zhao J, Yan J F, Jiang P, Li R G, Zhu B L. 2015. Cloning, expression and characterization of a novel esterase from a South China Sea sediment metagenome. Chin. J. Oceanol. Limnol., 33(4):819-827.
Zhu Y B, Zheng W G, Ni H, Liu H, Xiao A F, Cai H N. 2015.Molecular cloning and characterization of a new and highly thermostable esterase from Geobacillus sp. JM6. J.Basic Microbiol., 55(10):1 219-1 231.
Copyright © Haiyang Xuebao