Cite this paper:
LIANG Pengjuan, LI Shangyong, WANG Kun, WANG Fang, XING Mengxin, HAO Jianhua, SUN Mi. A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122[J]. Journal of Oceanology and Limnology, 2018, 36(2): 483-489

A thermostable serralysin inhibitor from marine bacterium Flavobacterium sp. YS-80-122

LIANG Pengjuan1,2, LI Shangyong1,2, WANG Kun1,3, WANG Fang1, XING Mengxin1,2, HAO Jianhua1,2, SUN Mi1,2
1 Key Laboratory of Polar Fisheries Development, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
2 Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China;
3 Shanghai Ocean University, Shanghai 201306, China
Abstract:
Serralysin inhibitors have been proposed as potent drugs against many diseases and may help to prevent further development of antibiotic-resistant pathogenic bacteria. In this study, a novel serralysin inhibitor gene, lupI, was cloned from the marine bacterium Flavobacterium sp. YS-80-122 and expressed in Escherichia coli. The deduced serralysin inhibitor, LupI, shows <40% amino acid identity to other reported serralysin inhibitors. Multiple sequence alignment and phylogenetic analysis of LupI with other serralysin inhibitors indicated that LupI was a novel type of serralysin inhibitor. The inhibitory constant for LupI towards its target metalloprotease was 0.64 μmol/L. LupI was thermostable at high temperature, in which 35.6%-90.7% of its inhibitory activity was recovered after treatment at 100℃ for 1-60 min followed by incubation at 0℃. This novel inhibitor may represent a candidate drug for the treatment of serralysin-related infections.
Key words:    serralysin inhibitor|sequence analysis|kinetic parameter|thermostable   
Received: 2016-10-13   Revised:
Tools
PDF (717 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIANG Pengjuan
Articles by LI Shangyong
Articles by WANG Kun
Articles by WANG Fang
Articles by XING Mengxin
Articles by HAO Jianhua
Articles by SUN Mi
References:
Arumugam S, Gray R D, Lane A N. 2008. NMR structure note:alkaline proteinase inhibitor APRin from Pseudomonas aeruginosa. J. Biomol. NMR, 40(3):213-217.
Bae K H, Kim I C, Kim K S, Shin Y C, Byun S M. 1998. The Leu-3 residue of Serratia marcescens metalloprotease inhibitor is important in inhibitory activity and binding with Serratia marcescens metalloprotease. Arch. Biochem.Biophys., 352(1):37-43.
Bardoel B W, van Kessel K P M, van Strijp J A G, Milder F J. 2012. Inhibition of Pseudomonas aeruginosa virulence:characterization of the AprA-AprI interface and species selectivity. J. Mol. Biol., 415(3):573-583.
Baumann U, Bauer M, Létoffé S, Delepelaire P, Wandersman C. 1995. Crystal structure of a complex between Serratia marcescens metallo-protease and an inhibitor from Erwinia chrysanthemi. J. Mol. Biol., 248(3):653-661.
Dhanaraj V, Ye Q Z, Johnson L L, Hupe D J, Ortwine D F, Dunbar J B Jr, Rubin J R, Pavlovsky A, Humblet C, Blundell T L. 1996. Designing inhibitors of the metalloproteinase superfamily:comparative analysis of representative structures. Drug Des. Discov., 13(3-4):3-14.
Feltzer R E, Gray R D, Dean W L, Pierce W M Jr. 2000.Alkaline proteinase inhibitor of Pseudomonas aeruginosa:interaction of native and N-terminally truncated inhibitor proteins with Pseudomonas metalloproteinases. J. Biol. Chem., 275(28):21 002-21 009.
Feltzer R E, Trent J O, Gray R D. 2003. Alkaline proteinase inhibitor of Pseudomonas aeruginosa:a mutational and molecular dynamics study of the role of n-terminal residues in the inhibition of pseudomonas alkaline proteinase. J. Biol. Chem., 278(28):25 952-25 957.
Hao J H, Sun M. 2015. Purification and characterization of a cold alkaline protease from a psychrophilic Pseudomonas aeruginosa HY1215. Appl. Biochem. Biotechnol., 175(2):715-722.
Hege T, Baumann U. 2001. Protease C of Erwinia chrysanthemi:the crystal structure and role of amino acids Y228 and E189. J. Mol. Biol., 314(2):187-193.
Hege T, Feltzer R E, Gray R D, Baumann U. 2001. Crystal structure of a complex between Pseudomonas aeruginosa alkaline protease and its cognate inhibitor:inhibition by a Zinc-NH2 coordinative bond. J. Biol. Chem., 276(37):35 087-35 092.
Ji X F, Zheng Y, Wang W, Sheng J, Hao J H, Sun M. 2013.Virtual screening of novel reversible inhibitors for marine alkaline protease MP. J. Mol. Graph. Model., 46:125-131.
Kida Y, Higashimoto Y, Inoue H, Shimizu T, Kuwano K. 2008.A novel secreted protease from Pseudomonas aeruginosa activates NF-κB through protease-activated receptors.Cell. Microbiol., 10(7):1 491-1 504.
Kida Y, Inoue H, Shimizu T, Kuwano K. 2007. Serratia marcescens serralysin induces inflammatory responses through protease-activated receptor 2. Infect. Immun., 75(1):164-174.
Kim K S, Kim T U, Kim I J, Byun S M, Shin Y C. 1995.Characterization of a metalloprotease inhibitor protein(SmaPI) of Serratia marcescens. Appl. Environ.Microbiol., 61(8):3 035-3 041.
Létoffé S, Delepelaire P, Wandersman C. 1989. Characterization of a protein inhibitor of extracellular proteases produced by Erwinia chrysanthemi. Mol. Microbiol., 3(1):79-86.
Li S Y, Wang L N, Yang J, Bao J, Liu J Z, Lin S X, Hao J H, Sun M. 2016. Affinity purification of metalloprotease from marine bacterium using immobilized metal affinity chromatography. J. Sep. Sci., 39(11):2 050-2 056.
Liao C H, McCallus D E. 1998. Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091. Appl. Environ.Microbiol., 64(3):914-921.
Louis D, Sorlier P, Wallach J. 1998. Quantitation and enzymatic activity of the alkaline protease from Pseudomonas aeruginosa in culture supernatants from clinical strains.Clin. Chem. Lab. Med., 36(5):295-298.
Wang F, Hao J H, Yang C Y, Sun M. 2010. Cloning, expression, and identification of a novel extracellular cold-adapted alkaline protease gene of the marine bacterium strain YS-80-122. Appl. Biochem. Biotechnol., 162(5):1 497-1 505.
Copyright © Haiyang Xuebao