Cite this paper:
Igor G. PROKOPKIN, Egor S. ZADEREEV. A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake[J]. Journal of Oceanology and Limnology, 2018, 36(6): 2018-2032

A model study of the effect of weather forcing on the ecology of a meromictic Siberian lake

Igor G. PROKOPKIN1, Egor S. ZADEREEV1,2
1 Institute of Biophysics SB RAS, Krasnoyarsk Scientific Center, 660036, Akademgorodok, Krasnoyarsk, Russia;
2 Siberian Federal University, 660079, Svobodnii av. 79, Krasnoyarsk, Russia
Abstract:
We used a Lake Shira numerical model to estimate the response of the ecosystem of a saline meromictic lake to variations in weather parameters during the growing season. The sensitivity analysis of the model suggests that compared to other external (nutrient inflows) and internal (spring biomasses of food-web components) factors, weather parameters are among the most influential for both mixolimnetic (phyto- and zooplankton) and monimolimnetic (purple sulfur bacteria, sulfur reducing bacteria and hydrogen sulfide) food-web components. Calculations with different weather scenarios shows how changes in the water temperature and mixing depth affect mixolimnetic and monimolimnetic food-web components and the depth of the oxic-anoxic interface in a meromictic lake. When weather forcing stimulates an increase in the biomass of food-web components in the mixolimnion, it produces cascading effects that lead to three results: 1) a higher content of detritus in the water column; 2) a higher content of hydrogen sulfide in the monimolimnion; 3) raising of the oxic-anoxic interface closer to the water-air surface. This cascading effect is complicated by the negative correlation between two light dependent primary producers located at different depths—phytoplankton in the mixolimnion and purple sulfur bacteria at the oxic-anoxic interface. Thus, weather conditions that stimulate higher phytoplankton biomass are associated with a higher detritus content and lower biomass of purple sulfur bacteria, a higher content of hydrogen sulfide and a shallower oxic-anoxic interface. The same weather conditions (higher wind, lower cloud cover, and lower air temperature) promote a scenario of less stable thermal stratification. Thus, our calculations suggest that weather parameters during the summer season strongly control the mixing depth, water temperature and the mixolimnetic food web. An effect of biogeochemical and physical interactions on the depth of the oxicanoxic interface is also detectable. However, intra- and interannual climate and weather effects will be more important for the control of meromixis stability.
Key words:    meromictic lake|numerical model|weather forcing|sensitivity analysis|stratification|food web   
Received: 2017-11-20   Revised:
Tools
PDF (631 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Igor G. PROKOPKIN
Articles by Egor S. ZADEREEV
References:
Simlab. 2011. Software package for uncertainty and sensitivity analysis. Joint Research Centre of the European Commission. http://simlab.jrc.ec.europa.eu.
Arhonditsis G B, Brett M T. 2005. Eutrophication model for Lake Washington (USA):Part I. model description and sensitivity analysis. Ecol. Modell., 187(2-3):140-178.
Arvola L, George G, Livingstone D M, Järvinen M, Blenckner T, Dokulil M T, Jennings E, Aonghusa C N, Nõges P, Nõges T, Weyhenmeyer G A. 2009. The impact of the changing climate on the thermal characteristics of lakes.In:George G ed. The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol. 4. Springer, Dordrecht. p.85-101.
Babushkina E A, Belokopytova L V, Grachev A M, Meko D M, Vaganov E A. 2017. Variation of the hydrological regime of Bele-Shira closed basin in Southern Siberia and its reflection in the radial growth of Larix sibirica. Reg.Environ. Change, 17(6):1 725-1 737.
Belolipetsky P V, Belolipetskii V M, Genova S N, Mooij W M. 2010. Numerical modeling of vertical stratification of Lake Shira in summer. Aquat. Ecol., 44(3):561-570.
Belolipetsky V M, Genova S N. 1998. Investigation of hydrothermal and ice regimes in hydropower station bays.Int. J. Comput. Fluid. Dyn., 10(2):151-158.
Berger S A, Diehl S, Kunz T J, Albrecht D, Oucible A M, Ritzer S. 2006. Light supply, plankton biomass, and seston stoichiometry in a gradient of lake mixing depths.Limnol. Oceanogr., 51(4):1 898-1 905.
Boehrer B, Schultze M. 2008. Stratification of lakes. Rev.Geophys., 46(2):RG2005.
Bueche T, Vetter M. 2014. Simulating water temperatures and stratification of a pre-alpine lake with a hydrodynamic model:calibration and sensitivity analysis of climatic input parameters. Hydrol. Proc., 28(3):1 450-1 464.
Burger D F, Hamilton D P, Pilditch C A. 2008. Modelling the relative importance of internal and external nutrient loads on water column nutrient concentrations and phytoplankton biomass in a shallow polymictic lake.Ecol. Modell., 211(3-4):411-423.
Butcher J B, Nover D, Johnson T E, Clark C M. 2015.Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Change, 129(1-2):295-305.
Degermendzhy A G, Zadereev Y S, Rogozin D Y, Prokopkin I G, Barkhatov Y V, Tolomeev A P, Khromechek E B, Janse J H, Mooij W M, Gulati R D. 2010. Vertical stratification of physical, chemical and biological components in two saline lakes Shira and Shunet (South Siberia, Russia).Aquat. Ecol., 44(3):619-632.
Elliott J A, Jones I D, Thackeray S J. 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake.Hydrobiologia, 559(1):401-411.
Gaevsky N A, Zotina T A, Gorbaneva T B. 2002. Vertical structure and photosynthetic activity of Lake Shira phytoplankton. Aquat. Ecol., 36(2):165-178.
Gerten D, Adrian R. 2000. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnol.Oceanogr., 45(5):1 058-1 066.
Hadley K R, Paterson A M, Stainsby E A, Michelutti N, Yao H, Rusak J A, Ingram R, McConnell C, Smol J P. 2014.Climate warming alters thermal stability but not stratification phenology in a small north-temperate lake.Hydrol. Proc., 28(26):6 309-6 319.
Holzner C P, Aeschbach-Hertig W, Simona M, Veronesi M, Imboden D M, Kipfer R. 2009. Exceptional mixing events in meromictic Lake Lugano (Switzerland/Italy), studied using environmental tracers. Limnol. Oceanogr., 54(4):1 113-1 124.
Hondzo M, Stefan H G. 1993. Regional water temperature characteristics of lakes subjected to climate change. Clim.Change, 24(3):187-211.
Ito Y, Momii K. 2015. Impacts of regional warming on long-term hypolimnetic anoxia and dissolved oxygen concentration in a deep lake. Hydrol. Proc., 29(9):2 232-2 242.
Jankowski T, Livingstone D M, Bührer H, Forster R, Niederhauser P. 2006. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion:implications for a warmer world. Limnol. Oceanogr., 51(2):815-819.
Janse J H. 2005. Model Studies on the Eutrophication of Shallow Lakes and Ditches. Wageningen University, Wageningen, The Netherlands. 378p.
Jasser I, Arvola L. 2003. Potential effects of abiotic factors on the abundance of autotrophic picoplankton in four boreal lakes. J. Plankton Res., 25(8):873-883.
Jöhnk K D, Huisman J, Sharples J, Sommeijer B, Visser P M, Stroom J M. 2008. Summer heatwaves promote blooms of harmful cyanobacteria. Glob. Change Biol., 14(3):495-512.
Jones I, Sahlberg J, Persson I. 2010. Modelling the impact of climate change on the thermal characteristics of lakes. In:George G ed. The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol. 4. Springer, Dordrecht. p.103-120.
Kaden H, Peeters F, Lorke A, Kipfer R, Tomonaga Y, Karabiyikoglu M. 2010. Impact of lake level change on deep-water renewal and oxic conditions in deep saline Lake Van, Turkey. Water Resour. Res., 46(11):W11508.
Kopylov A I, Kosolapov D B, Romanenko A V, Degermendzhy A G. 2002. Structure of planktonic microbial food web in a brackish stratified Siberian lake. Aquat. Ecol., 36(2):179-204.
Liu W T, Bocaniov S A, Lamb K G, Smith R E H. 2014. Three dimensional modeling of the effects of changes in meteorological forcing on the thermal structure of Lake Erie. J. Great Lakes Res., 40(4):827-840.
Livingstone D M. 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change, 57(1-2):205-225.
Madgwick G, Jones I D, Thackeray S J, Elliott J A, Miller H J. 2006. Phytoplankton communities and antecedent conditions:high resolution sampling in Esthwaite Water.Freshw. Biol., 51(10):1 798-1 810.
McCauley E, Kalff J. 1981. Empirical relationships between phytoplankton and zooplankton biomass in lakes. Can. J.Fish. Aquat. Sci., 38(4):458-463.
Melack J M, Jellison R, MacIntyre S, Hollibaugh J T. 2017.Mono Lake:plankton dynamics over three decades of meromixis or monomixis. In:Gulati R D, Zadereev E S, Degermendzhi A G eds. Ecology of Meromictic Lakes.Springer, Cham. p.325-351.
Miller L G, Jellison R, Oremland R S, Culbertson C W. 1993.Meromixis in hypersaline Mono Lake, California. 3.
biogeochemical response to stratification and overturn.Limnol. Oceanogr., 38(5):1 040-1 051.
Mooij W M, Janse J H, De Senerpont Domis L N, Hülsmann S, Ibelings B W. 2007. Predicting the effect of climate change on temperate shallow lakes with the ecosystem model PCLake. Hydrobiologia, 584(1):443-454.
Mooij W M, Trolle D, Jeppesen E, Arhonditsis G, Belolipetsky P V, Chitamwebwa D B R, Degermendzhy A G, DeAngelis D L, De Senerpont Domis L N, Downing A S, Elliott J A, Fragoso C R Jr, Gaedke U, Genova S N, Gulati R D, Håkanson L, Hamilton D P, Hipsey M R, Hoen J, Hülsmann S, Los F H, Makler-Pick V, Petzoldt T, Prokopkin I G, Rinke K, Schep S A, Tominaga K, Van Dam A A, Van Nes E H, Wells S A, Janse J H. 2010.Challenges and opportunities for integrating lake ecosystem modelling approaches. Aquat. Ecol., 44(3):633-667.
Morris M D. 1991. Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2):161-174.
Paerl H W, Huisman J. 2008. Blooms like it hot. Science, 320(5872):57-58.
Prokopkin I G, Barkhatov Y V, Khromechek E B. 2014. A onedimensional model for phytoflagellate distribution in the meromictic lake. Ecol. Modell., 288:1-8.
Prokopkin I G, Mooij W M, Janse J H, Degermendzhy A G. 2010. A general one-dimensional vertical ecosystem model of Lake Shira (Russia, Khakasia):description, parametrization and analysis. Aquat. Ecol., 44(3):585-618.
Rinke K, Yeates P, Rothhaupt K O. 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshw. Biol., 55(8):1 674-1 693.
Robertson D M, Ragotzkie R A. 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat. Sci., 52(4):360-380.
Rogozin D Y, Genova S N, Gulati R D, Degermendzhy A G. 2010. Some generalizations based on stratification and vertical mixing in meromictic Lake Shira, Russia, in the period 2002-2009. Aquat. Ecol., 44(3):485-496.
Rogozin D Y, Tarnovsky M O, Belolipetskii V M, Zykov V V, Zadereev E S, Tolomeev A P, Drobotov A V, Barkhatov Y V, Gaevsky N A, Gorbaneva T B, Kolmakova A A, Degermendzhi A G. 2017. Disturbance of meromixis in saline Lake Shira (Siberia, Russia):possible reasons and ecosystem response. Limnologica Limnol. Ecol. Manage.Inland Waters, 66:12-23.
Rogozin D Y, Zykov V V, Degermendzhi A G. 2012. Ecology of purple sulfur bacteria in the highly stratified meromictic Lake Shunet (Siberia, Khakassia) in 2002-2009.Microbiology, 81(6):727-735.
Saltelli A, Tarantola S, Campolongo F, Ratto M. 2004.Sensitivity Analysis in Practice:A Guide to Assessing Scientific Models. John Wiley & Sons, Ltd., Chichester. 217p.
Shimoda Y, Azim M E, Perhar G, Ramin M, Kenney M A, Sadraddini S, Gudimov A, Arhonditsis G B. 2011. Our current understanding of lake ecosystem response to climate change:what have we really learned from the north temperate deep lakes? J. Great Lakes Res., 37(1):173-193.
Straile D. 2000. Meteorological forcing of plankton dynamics in a large and deep continental European lake. Oecologia, 122(1):44-50.
Tolomeyev A P. 2002. Phytoplankton diet of Arctodiaptomus salinus (Copepoda, Calanoida) in lake Shira (Khakasia).Aquat. Ecol., 36(2):229-234.
Weyhenmeyer G A, Blenckner T, Pettersson K. 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnol. Oceanogr., 44(7):1 788-1 792.
Winder M, Schindler D E. 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology, 85(8):2 100-2 106.
Zadereev E S, Boehrer B, Gulati R D. 2017a. Introduction:meromictic lakes, their terminology and geographic distribution. In:Gulati R D, Zadereev E S, Degermendzhi A G eds. Ecology of Meromictic Lakes. Springer, Cham.p.1-11.
Zadereev E S, Gulati R D, Camacho A. 2017b. Biological and ecological features, trophic structure and energy flow in meromictic lakes. In:Gulati R D, Zadereev E S, Degermendzhi A G eds. Ecology of Meromictic Lakes.Springer, Cham. p.61-86.
Zadereev E S, Tolomeev A P, Drobotov A V, Kolmakova A A. 2014. Impact of weather variability on spatial and seasonal dynamics of dissolved and suspended nutrients in water column of meromictic Lake Shira. Contemp. Probl. Ecol., 7(4):384-396.
Zadereev Y S, Tolomeyev A P. 2007. The vertical distribution of zooplankton in brackish meromictic lake with deepwater chlorophyll maximum. Hydrobiologia, 576(1):69-82.
Zotina T A, Tolomeyev A P, Degermendzhy N N. 1999. Lake Shira, a Siberian salt lake:ecosystem structure and function:1. Major physico-chemical and biological features. Int. J. Salt Lake Res., 8(3):211-232.
Copyright © Haiyang Xuebao