Cite this paper:
YONG Wai-Kuan, LIM Phaik-Eem, VELLO Vejeysri, SIM Kae-Shin, ABDUL MAJID Nazia, MUSTAFA Emienour Muzalina, NIK SULAIMAN Nik Meriam, LIEW Kan-Ern, CHEN Brenna Jia-Tian, PHANG Siew-Moi. Metabolic and physiological regulation of Chlorella sp. (Trebouxiophyceae, Chlorophyta) under nitrogen deprivation[J]. Journal of Oceanology and Limnology, 2019, 37(1): 186-198

Metabolic and physiological regulation of Chlorella sp. (Trebouxiophyceae, Chlorophyta) under nitrogen deprivation

YONG Wai-Kuan1,2, LIM Phaik-Eem1, VELLO Vejeysri1,3, SIM Kae-Shin3, ABDUL MAJID Nazia3, MUSTAFA Emienour Muzalina4, NIK SULAIMAN Nik Meriam5, LIEW Kan-Ern6, CHEN Brenna Jia-Tian7, PHANG Siew-Moi1,3
1 Institute of Ocean and Earth Sciences, University of Malaya, 50603 Kuala Lumpur, Malaysia;
2 Institute of Graduate Studies, University of Malaya, 50603 Kuala Lumpur, Malaysia;
3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia;
4 School of Fisheries and Aquaculture Sciences, University of Malaysia, Terengganu, T145, 21300 Kuala Terengganu, Terengganu, Malaysia;
5 Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia;
6 Airbus Group Malaysia, Menara HLA, 3, Jalan Kia Peng, 50450 Kuala Lumpur, Malaysia;
7 Aerospace Malaysia Innovation Centre, Level 1, MIGHT Building, 3517, Jalan Teknokrat 5, 63000 Cyberjaya, Selangor, Malaysia
Abstract:
A freshwater green microalgae Chlorella sp., UMACC344 was shown to produce high lipid content and has the potential to be used as feedstock for biofuel production. In this study, photosynthetic efficiency, biochemical profiles and non-targeted metabolic profiling were studied to compare between the nitrogen-replete and deplete conditions. Slowed growth, change in photosynthetic pigments and lowered photosynthetic efficiency were observed in response to nitrogen deprivation. Biochemical profiles of the cultures showed an increased level of carbohydrate, lipids and total fatty acids, while the total soluble protein content was lowered. A trend of fatty acid saturation was observed in the nitrogen-deplete culture with an increase in the level of saturated fatty acids especially C16:0 and C18:0, accompanied by a decrease in proportions of monounsaturated and polyunsaturated fatty acids. Fifty-nine metabolites, including amino acids, lipids, phytochemical compounds, vitamins and cofactors were significantly dysregulated and annotated in this study. Pathway mapping analysis revealed a rewiring of metabolic pathways in the cells, particularly purine, carotenoid, nicotinate and nicotinamide, and amino acid metabolisms. Within the treatment period of nitrogen deprivation, the key processes involved were reshuffling of nitrogen from proteins and photosynthetic machinery, together with carbon repartitioning in carbohydrates and lipids.
Key words:    metabolic profiling|Chlorella sp.|nitrogen stress|lipid|fatty acid   
Received: 2017-09-11   Revised: 2017-11-20
Tools
PDF (898 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YONG Wai-Kuan
Articles by LIM Phaik-Eem
Articles by VELLO Vejeysri
Articles by SIM Kae-Shin
Articles by ABDUL MAJID Nazia
Articles by MUSTAFA Emienour Muzalina
Articles by NIK SULAIMAN Nik Meriam
Articles by LIEW Kan-Ern
Articles by CHEN Brenna Jia-Tian
Articles by PHANG Siew-Moi
References:
Allen J W, DiRusso C C, Black P N. 2015. Triacylglycerol synthesis during nitrogen stress involves the prokaryotic lipid synthesis pathway and acyl chain remodeling in the microalgae Coccomyxa subellipsoidea. Algal Res., 10:110-120, https://doi.org/10.1016/j.algal.2015.04.019.
Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol., 37(8):911-917, https://doi.org/10.1139/o59-099.
Chu W L, Phang S M, Goh S H. 1994. Studies on the production of useful chemicals, especially fatty acids in the marine diatom Nitzschia conspicua Grunow. Hydrobiologia, 285(1-3):33-40, https://doi.org/10.1007/BF00005651.
Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem., 28(3):350-356, https://doi.org/10.1021/ac60111a017.
Gao B Y, Yang J, Lei X Q, Xia S, Li A F, Zhang C W. 2016.Characterization of cell structural change, growth, lipid accumulation, and pigment profile of a novel oleaginous microalga, Vischeria stellata (Eustigmatophyceae), cultured with different initial nitrate supplies. J. Appl.Phycol., 28(2):821-830, https://doi.org/10.1007/s10811-015-0626-1.
Gao C F, Wang Y, Shen Y, Yan D, He X, Dai J B, Wu Q Y. 2014. Oil accumulation mechanisms of the oleaginous microalga Chlorella protothecoides revealed through its genome, transcriptomes, and proteomes. BMC Genomics, 15:582, https://doi.org/10.1186/1471-2164-15-582.
Gargouri M, Park J J, Holguin F O, Kim M J, Wang H X, Deshpande R R, Shachar-Hill Y, Hicks L M, Gang D R. 2015. Identification of regulatory network hubs that control lipid metabolism in Chlamydomonas reinhardtii.J. Exp. Bot., 66(15):4 551-4 566, https://doi.org/10.1093/jxb/erv217.
Gowda H, Ivanisevic J, Johnson C H, Kurczy M E, Benton H P, Rinehart D, Nguyen T, Ray J, Kuehl J, Arevalo B, Westenskow P D, Wang J H, Arkin A P, Deutschbauer A M, Patti G J, Siuzdak G. 2014. Interactive XCMS Online:simplifying advanced metabolomic data processing and subsequent statistical analyses. Anal. Chem., 86(14):6 931-6 939, https://doi.org/10.1021/ac500734c.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances. Plant J., 54(4):621-639, https://doi.org/10.1111/j.1365-313X.2008.03492.x.
Ito T, Tanaka M, Shinkawa H, Nakada T, Ano Y, Kurano N, Soga T, Tomita M. 2013. Metabolic and morphological changes of an oil accumulating trebouxiophycean alga in nitrogen-deficient conditions. Metabolomics, 9(S1):178-187, https://doi.org/10.1007/s11306-012-0463-z.
Juneja A, Ceballos R M, Murthy G S. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production:a review. Energies, 6(9):4 607-4 638, https://doi.org/10.3390/en6094607.
Levitan O, Dinamarca J, Zelzion E, Lun D S, Guerra L T, Kim M K, Kim J, Van Mooy B A S, Bhattacharya D, Falkowski P G. 2015. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress.Proc. Natl. Acad. Sci. U.S.A., 112(2):412-417, https://doi.org/10.1073/pnas.1419818112.
Li T T, Gargouri M, Feng J, Park J J, Gao D F, Miao C, Dong T, Gang D R, Chen SL. 2015. Regulation of starch and lipid accumulation in a microalga Chlorella sorokiniana.Bioresour. Technol., 180:250-257, https://doi.org/10.1016/j.biortech.2015.01.005.
Li Y Q, Han F X, Xu H, Mu J X, Chen D, Feng B, Zeng H Y. 2014. Potential lipid accumulation and growth characteristic of the green alga Chlorella with combination cultivation mode of nitrogen (N) and phosphorus (P).Bioresour. Technol., 174:24-32, https://doi.org/10.1016/j.biortech.2014.09.142.
Li Y T, Han D X, Yoon K, Zhu S N, Sommerfeld M, Hu Q. 2013. Molecular and cellular mechanisms for lipid synthesis and accumulation in microalgae:Biotechnological implications. In:Richmond A, Hu Q eds. Handbook of Microalgal Culture:Applied Phycology and Biotechnology. 2nd edn. John Wiley & Sons, Ltd, Oxford, UK. p.545-565. https://doi.org/10.1002/9781118567166.ch28.
Longworth J, Wu D Y, Huete-Ortega M, Wright P C, Vaidyanathan S. 2016. Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion. Algal Res., 18:213-224, https://doi.org/10.1016/j.algal.2016.06.015.
Lu N, Wei D, Chen F, Yang S T. 2013. Lipidomic profiling reveals lipid regulation in the snow alga Chlamydomonas nivalis in response to nitrate or phosphate deprivation.Process Biochem., 48(4):605-613, https://doi.org/10.1016/j.procbio.2013.02.028.
Martin G J O, Hill D R A, Olmstead I L D, Bergamin A, Shears M J, Dias D A, Kentish S E, Scales P J, Botté C Y, Callahan D L. 2014. Lipid profile remodeling in response to nitrogen deprivation in the microalgae Chlorella sp.(Trebouxiophyceae) and Nannochloropsis sp.(Eustigmatophyceae). PLoS One, 9(8):e103389, https://doi.org/10.1371/journal.pone.0103389.
Millán-Oropeza A, Fernández-Linares L. 2017. Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions. Environ. Sci. Pollut. Res. Int., 24(33):25 618-25 626, https://doi.org/10.1007/s11356-016-7013-6.
Msanne J, Xu D, Konda A R, Casas-Mollano J A, Awada T, Cahoon E B, Cerutti H. 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169.Phytochemistry, 75:50-59, https://doi.org/10.1016/j.phytochem.2011.12.007.
Ng F L, Phang S M, Periasamy V, Yunus K, Fisher A C. 2014.Evaluation of algal biofilms on indium tin oxide (ITO) for use in biophotovoltaic platforms based on photosynthetic performance. PLoS One, 9(5):e97643, https://doi.org/10.1371/journal.pone.0097643.
Nichols H W, Bold H C. 1965. Trichosarcina polymorpha gen.et sp. nov. J. Phycol., 1(1):34-38, https://doi.org/10.1111/j.1529-8817.1965.tb04552.x.
Park J J, Wang H X, Gargouri M, Deshpande R R, Skepper J N, Holguin F O, Juergens M T, Shachar-Hill Y, Hicks L M, Gang D R. 2015. The response of Chlamydomonas reinhardtii to nitrogen deprivation:a systems biology analysis. Plant J., 81(4):611-624, https://doi.org/10.1111/tpj.12747.
Recht L, Töpfer N, Batushansky A, Sikron N, Gibon Y, Fait A, Nikoloski Z, Boussiba S, Zarka A. 2014. Metabolite profiling and integrative modeling reveal metabolic constraints for carbon partitioning under nitrogen starvation in the green algae Haematococcus pluvialis. J.Biol. Chem., 289(44):30 387-30 403, https://doi.org/10.1074/jbc.M114.555144.
Salomon E, Bar-Eyal L, Sharon S, Keren N. 2013. Balancing photosynthetic electron flow is critical for cyanobacterial acclimation to nitrogen limitation. Biochim. Biophys.Acta, 1827(3):340-347, https://doi.org/10.1016/j.bbabio.2012.11.010.
Schmollinger S, Mühlhaus T, Boyle N R, Blaby I K, Casero D, Mettler T, Moseley J L, Kropat J, Sommer F, Strenkert D, Hemme D, Pellegrini M, Grossman A R, Stitt M, Schroda M, Merchant S S. 2014. Nitrogen-sparing mechanisms in Chlamydomonas affect the transcriptome, the proteome, and photosynthetic metabolism. Plant Cell, 26(4):1 410-1 435, https://doi.org/10.1105/tpc.113.122523.
Sharma K K, Schuhmann H, Schenk P M. 2012. High lipid induction in microalgae for biodiesel production.Energies, 5(5):1 532-1 553, https://doi.org/10.3390/en5051532.
Solovchenko A E, Khozin-Goldberg I, Cohen Z, Merzlyak M N. 2009. Carotenoid-to-chlorophyll ratio as a proxy for assay of total fatty acids and arachidonic acid content in the green microalga Parietochloris incisa. J. Appl.Phycol., 21(3):361-366, https://doi.org/10.1007/s10811-008-9377-6.
Stansell G R, Gray V M, Sym S D. 2012. Microalgal fatty acid composition:Implications for biodiesel quality. J. Appl.Phycol., 24(4):791-801, https://doi.org/10.1007/s10811-011-9696-x.
Stasolla C, Katahira R, Thorpe T A, Ashihara H. 2003. Purine and pyrimidine nucleotide metabolism in higher plants. J.Plant Physiol., 160(11):1 271-1 295, https://doi.org/10.1078/0176-1617-01169.
Strickland J D H, Parsons T R. 1972. A Practical Handbook of Seawater Analysis. 2nd edn. Fisheries Research Board of Canada, Ottawa, Canada. 310p.
Wase N, Black P N, Stanley B A, DiRusso C C. 2014. Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. J. Proteome Res., 13(3):1 373-1 396, https://doi.org/10.1021/pr400952z.
Worley B, Powers R. 2013. Multivariate analysis in metabolomics. Curr. Metabolomics, 1(1):92-107, https://doi.org/10.2174/2213235X11301010092.
Yang D W, Zhang Y T, Barupal D K, Fan X L, Gustafson R, Guo R B, Fiehn O. 2014. Metabolomics of photobiological hydrogen production induced by CCCP inChlamydomonas reinhardtii. Int. J. Hydrogen Energy, 39(1):150-158, https://doi.org/10.1016/j.ijhydene.2013.09.116.
Yang Z K, Niu Y F, Ma Y H, Xue J, Zhang M H, Yang W D, Liu J S, Lu S H, Guan Y F, Li H Y. 2013. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol.Biofuels, 6(1):67, https://doi.org/10.1186/1754-6834-6-67.
Copyright © Haiyang Xuebao