Cite this paper:
WU Jiajia, GAO Jieyan, ZHANG Dun, TAN Faqi, YIN Jiang, WANG Yu, SUN Yan, LI Ee. Microbial communities present on mooring chain steels with different copper contents and corrosion rates[J]. Journal of Oceanology and Limnology, 2020, 38(2): 378-394

Microbial communities present on mooring chain steels with different copper contents and corrosion rates

WU Jiajia1,2,3, GAO Jieyan1,2,3,4, ZHANG Dun1,2,3, TAN Faqi1,2,3, YIN Jiang5, WANG Yu1,2,3,4, SUN Yan1,2,3, LI Ee1,2,3
1 Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China;
3 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China;
5 Shanghai Bainite Chain Material Tech Co. Ltd., Shanghai 200439, China
Abstract:
Copper has long been utilized as a disinfectant for bacteria, but its impact on microbial communities attached to the steel surface in seawater remains unknown. In the present study, 3 mooring chain steels of different copper contents are subjected to a 3-month marine field exposure, and the corrosion rate increases in the order of BR5 steel (without copper) < BR5CuH steel (0.8% copper) < BR5CuL steel (0.4% copper). The microbial community results show that copper introduction does not result in an obvious change in microbial quantity, but it alters the diversity, richness, and structure of microbial communities due to the variation in copper-resistance of different species. BR5CuH steel holds microbial communities with the highest percentage of some well-known corrosive microbes including sulfate-reducing bacteria, sulfuroxidizing bacteria, and iron-oxidizing bacteria, but possesses the lowest community diversity/richness owing to the toxicity of copper. The microbial community diversity/richness is stimulated by the low-copper content of BR5CuL steel, and this steel also carries an intermediate proportion of such corrosive bacteria. Both well-known corrosive bacteria and microbial community diversity/richness seem to be involved in the corrosion acceleration of copper-bearing mooring chain steels.
Key words:    marine corrosion|microbially influenced corrosion|microbial community|mooring chain steel|copper introduction   
Received: 2018-12-26   Revised: 2019-04-11
Tools
PDF (1958 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WU Jiajia
Articles by GAO Jieyan
Articles by ZHANG Dun
Articles by TAN Faqi
Articles by YIN Jiang
Articles by WANG Yu
Articles by SUN Yan
Articles by LI Ee
References:
Abdolahi A, Hamzah E, Ibrahim Z, Hashim S. 2014.Microbially influenced corrosion of steels by Pseudomonas aeruginosa. Corrosion Reviews, 32(3-4):129-141, https://doi.org/10.1515/corrrev-2013-0047.
Andreazza R, Okeke B C, Pieniz S, Camargo F A O. 2012.Characterization of copper-resistant rhizosphere bacteria from Avena sativa and Plantago lanceolata for copper bioreduction and biosorption. Biological Trace Element Research, 146(1):107-115, https://doi.org/10.1007/s12011-011-9228-1.
Bazylinski D A, Williams T J, Lefevre C T, Trubitsyn D, Fang J, Beveridge T J, Moskowitz B M, Ward B, Schubbe S, Dubbels B L, Simpson B. 2013. Magnetovibrio blakemorei gen. nov., sp. nov., a magnetotactic bacterium(Alphaproteobacteria:Rhodospirillaceae) isolated from a salt marsh. International Journal of Systematic and Evolutionary Microbiology, 63(5):1 824-1 833, https://doi.org/10.1099/ijs.0.044453-0.
Beech I B, Campbell S A. 2008. Accelerated low water corrosion of carbon steel in the presence of a biofilm harbouring sulphate-reducing and sulphur-oxidising bacteria recovered from a marine sediment. Electrochimica Acta, 54(1):14-21, https://doi.org/10.1016/j.electacta.2008.05.084.
Blekkenhorst F, Ferrari G M, van der Wekken C J, Ijsseling F P. 1986. Development of high strength low alloy steels for marine applications:Part 1:Results of long term exposure tests on commercially available and experimental steels.British Corrosion Journal, 21(3):163-176, https://doi.org/10.1179/000705986798272136.
Bødtker G, Thorstenson T, Lillebø B L, Thorbjørnsen B E, Ulvøen R H, Sunde E, Torsvik T. 2008. The effect of longterm nitrate treatment on SRB activity, corrosion rate and bacterial community composition in offshore water injection systems. Journal of Industial Microbiology & Biotechnology, 35(12):1 625-1 636, https://doi.org/10.1007/s10295-008-0406-x.
Bonifay V, Wawrik B, Sunner J, Snodgrass E C, Aydin E, Duncan K E, Callaghan A V, Oldham A, Liengen T, Beech I. 2017. Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Frontiers in Microbiology, 8:99, https://doi.org/10.3389/fmicb.2017.00099.
Cantera S, Lebrero R, Garcíaencina P A, Muñoz R. 2016.Evaluation of the influence of methane and copper concentration and methane mass transport on the community structure and biodegradation kinetics of methanotrophic cultures. Journal of Environmental Management, 171:11-20, https://doi.org/10.1016/j.jenvman.2016.02.002.
Chen S Q, Wang P, Zhang D. 2014. Corrosion behavior of copper under biofilm of sulfate-reducing bacteria.Corrosion Science, 87(5):407-415, https://doi.org/10.1016/j.corsci.2014.07.001.
De la Iglesia R, Valenzuela-Heredia D, Andrade S, Correa J, González B. 2012. Composition dynamics of epilithic intertidal bacterial communities exposed to high copper levels. FEMS Microbiology Ecology, 79(3):720-727, https://doi.org/10.1111/j.1574-6941.2011.01254.x
Dinh H T, Kuever J, Mußmann M, Hassel A W, Stratmann M, Widdel F. 2004. Iron corrosion by novel anaerobic microorganisms. Nature, 427(6977):829-832, https://doi.org/10.1111/j.1574-6941.2011.01254.x.
Dupont C L, Grass G, Rensing C. 2011. Copper toxicity and the origin of bacterial resistance——new insights and applications. Metallomics, 3(11):1 109-1 118, https://doi.org/10.1039/C1MT00107H.
Espírito S C, Lam E W, Elowsky C G, Quaranta D, Domaille D W, Chang C J, Grass G. 2011. Bacterial killing by dry metallic copper surfaces. Applied and Environmental Microbiology, 77(3):794-802, https://doi.org/10.1128/AEM.01599-10.
Flemming C A, Trevors J T. 1989. Copper toxicity and chemistry in the environment:a review. Water, Air, and Soil Pollution, 44(1-2):143-158, https://doi.org/10.1007/BF00228784.
Fontaine E, Potts A, Ma K T, Arredondo A, Melchers R E. 2012. SCORCH JIP:examination and testing of severelycorroded mooring chains from West Africa. In:Offshore Technology Conference. Houston, Texas, https://doi.org/10.4043/23012-MS.
Forgeson B W, Southwell C R, Alexander A L. 1960. Corrosion of metals in tropical environments, Part 3-Underwater corrosion of ten structural steels. Corrosion, 16(3):105t-114t.
Génin J M R, Olowe A A, Resiak B, Confente M, Rollet-Benbouzid N, L'Haridon S, Prieur D. 1994. Products obtained by microbially-induced corrosion of steel in a marine environment:role of green rust two. Hyperfine Interactions, 93(1):1 807-1 812, https://doi.org/10.1007/BF02072950.
Gu T Y, Jia R, Unsal T, Xu D K. 2019. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. Journal of Materials Sciences & Technology, 35(4):631-636, https://doi.org/10.1016/j.jmst.201810.026.
Hong I T, Koo C H. 2005. Antibacterial properties, corrosion resistance and mechanical properties of Cu-modified SUS 304 stainless steel. Materials Science & Engineering, 393(1-2):213-222, https://doi.org/10.1016/j.msea.2004.10.032.
Hou B R, Li Y T, Li Y X, Zhang J L. 2000. Effect of alloy elements on the anticorrosion properties of low alloy steel. Bulletin of Materials Science, 23(3):189-192, https://doi.org/10.1007/BF02719908.
Huber B, Herzog B, Drewes J E, Koch K, Müller E. 2016.Characterization of sulfur oxidizing bacteria related to biogenic sulfuric acid corrosion in sludge digesters. BMC Microbiology, 16:153, https://doi.org/10.1186/s12866-016-0767-7.
Iverson W P. 1998. Possible source of a phosphorus compound produced by sulfate-reducing bacteria that cause anaerobic corrosion of iron. Materials Performance, 37(5):46-49.
Javaherdashti R. 2008. Microbiologically Influenced Corrosion:An Engineering Insight. Springer, Berlin, 164p Jayaraman A, Sun A K, Wood T K. 1998. Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. Journal of Applied Microbiology, 84(4):485-492, https://doi.org/10.1046/j.1365-2672.1998.00359.x.
Jia R, Unsal T, Xu D K, Lekbach Y, Gu T Y. 2019.Microbiologically influenced corrosion and current mitigation strategies:a state of the art review. International Biodeterioration & Biodegradation, 137:42-58, https://doi.org/10.1016/j.ibiod.2018.11.007.
Jia R, Yang D Q, Xu J, Xu D K, Gu T Y. 2017. Microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing Pseudomonas aeruginosa biofilm under organic carbon starvation. Corrosion Science, 127:1-9, https://doi.org/10.1016/j.corsci.2017.08.007.
Jyothsna T S S, Rahul K, Ramaprasad E V V, Sasikala C, Ramana C V. 2013. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. International Journal of Systematic and Evolutionary Microbiology, 63(12):4 619-4 625, https://doi.org/10.1099/ijs.0.054155-0.
Kim S, Lee J, Hwang B, Chang G L, Lee C. 2011. Variation of microstructures and mechanical properties in the postweld heat-treated HAZ of Cu containing HSLA steel welds. Metals & Materials International, 17(1):137-142, https://doi.org/10.1007/s12540-011-0219-8.
King R A, Miller J D A, Smith J S. 1973. Corrosion of mild steel by iron sulphides. British Corrosion Journal, 8(3):137-141, https://doi.org/10.1179/000705973798322251.
Li H B, Xu D K, Li Y C, Feng H, Liu Z Y, Li X G, Gu T Y, Yang K. 2015. Extracellular electron transfer is a bottleneck in the microbiologically influenced corrosion of C1018 carbon steel by the biofilm of sulfate-reducing bacterium Desulfovibrio vulgaris. PLoS ONE, 10(8):e0136183, https://doi.org/10.1371/journal.pone.0136183.
Li K F, Ramakrishna W. 2011. Effect of multiple metal resistant bacteria from contaminated lake sediments on metal accumulation and plant growth. Journal of Hazardosu Materials, 189(1-2):531-539, https://doi.org/10.1016/j.jhazmat.2011.02.075.
Li X H, Duan J Z, Xiao H, Li Y Q, Liu H X, Guan F, Zhai X F. 2017. Analysis of bacterial community composition of corroded steel immersed in Sanya and Xiamen seawaters in China via method of Illumina MiSeq sequencing.Frontiers in Microbiology, 8:1 737, https://doi.org/10.3389/fmicb.2017.01737.
Li Y C, Xu D K, Chen C F, Li X G, Jia R, Zhang D W, Sand W, Wang F H, Gu T Y. 2018. Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:a review. Journal of Materials Science & Technology, 34(10):1 713-1 718, https://doi.org/10.1016/j.jmst.2018.02.023.
Lins V F C, Soares R B, Alvarenga E A. 2017. Corrosion behaviour of experimental copper-antimony-molybdenum carbon steels in industrial and marine atmospheres and in a sulphuric acid aqueous solution. Corrosion Engineering, Science & Technology, 52(5):397-403, https://doi.org/10.1080/1478422X.2017.1305537.
Liu H W, Fu C Y, Gu T Y, Zhang G A, Lv Y L, Wang H T, Liu H F. 2015a. Corrosion behavior of carbon steel in the presence of sulfate reducing bacteria and iron oxidizing bacteria cultured in oilfield produced water. Corrosion Science, 100:484-495, https://doi.org/10.1016/j.corsci.2015.08.023.
Liu W. 2014. Rapid MIC attack on 2205 duplex stainless steel pipe in a yacht. Engineering Failure Analysis, 42(5):109-120, https://doi.org/10.1016/j.engfailanal.2014.04.001.
Liu Z D, Zhang C, Wang L J, He J W, Li B M, Zhang Y H, Xing X H. 2015b. Effects of furan derivatives on biohydrogen fermentation from wet steam-exploded cornstalk and its microbial community. Bioresource Technology, 175:152-159, https://doi.org/10.1016/j.biortech.2014.10.067.
Mand J, Voordouw G, Hoffmann H, Horne M. 2016. Linking sulfur cycling and MIC in offshore water transporting pipelines. In:CORROSION 2016. NACE International, British Columbia, Canada.
Marty F, Gueuné H, Malard E, Sánchez-Amaya J M, Sjögren L, Abbas B, Quillet L, van Loosdrecht M C M, Muyzer G. 2014. Identification of key factors in Accelerated Low Water Corrosion through experimental simulation of tidal conditions:influence of stimulated indigenous microbiota.Biofouling, 30(3):281-297, https://doi.org/10.1080/08927014.2013.864758.
McBeth J M, Emerson D. 2016. In situ microbial community succession on mild steel in estuarine and marine environments:exploring the role of iron-oxidizing bacteria. Frontiers in Microbiology, 7:767, https://doi.org/10.3389/fmicb.2016.00767.
Melchers R E, Jeffrey R J. 2013. Accelerated low water corrosion of steel piling in harbours. Corrosion Engineering, Science and Technology, 48(7):496-505, https://doi.org/10.1179/1743278213Y.0000000103.
Melchers R E. 2003. Modelling of marine immersion corrosion for copper-bearing steels. Corrosion Science, 45(10):2 307-2 323, https://doi.org/10.1016/S0010-938X(03)00049-0.
Melchers R E. 2004. Effect of small compositional changes on marine immersion corrosion of low alloy steels. Corrosion Science, 46(7):1 669-1 691, https://doi.org/10.1016/j.corsci.2003.10.004.
Nan L, Xu D K, Gu T Y, Song X, Yang K. 2015. Microbiological influenced corrosion resistance characteristics of a 304LCu stainless steel against Escherichia coli. Materials Science & Engineering C, 48:228-234, https://doi.org/10.1016/j.msec.2014.12.004.
Nemati M, Jenneman G E, Voordouw G. 2001. Impact of nitratemediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnology Progress, 17(5):852-859, https://doi.org/10.1021/bp010084v.
Okoro C, Smith S, Chiejina L, Lumactud R, An D S, Park H S, Voordouw J, Lomans B P, Voordouw G. 2014. Comparison of microbial communities involved in souring and corrosion in offshore and onshore oil production facilities in Nigeria.Journal of Industrial Microbiology & Biotechnology, 41(4):665-678, https://doi.org/10.1007/s10295-014-1401-z.
Ozdemir G, Ozturk T, Ceyhan N, Isler R, Cosar T. 2003. Heavy metal biosorption by biomass of Ochrobactrum anthropi producing exopolysaccharide in activated sludge.Bioresource Technology, 90(1):71-74, https://doi.org/10.1016/S0960-8524(03)00088-9.
Peng H L, Xie W J, Li D, Wu M R, Zhang Y G, Xu H X, Ye J, Ye T J, Xu L, Liang Y M, Liu W. 2019. Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater. Ecotoxicology and Environmental Safety, 168:17-26, https://doi.org/10.1016/j.ecoenv.2018.10.066.
Petersen J. 1977. Das verhalten von großbaustählen in meerwasser. Materials and Corrosion, 28(11):748-754, https://doi.org/10.1002/maco.19770281103.
Rao T S, Sairam T N, Viswanathan B, Nair K V K. 2000.Carbon steel corrosion by iron oxidising and sulphate reducing bacteria in a freshwater cooling system.Corrosion Science, 42(8):1 417-1 431, https://doi.org/10.1016/S0010-938X(99)00141-9.
Salta M, Wharton J A, Blache Y, Stokes K R, Briand J F. 2013.Marine biofilms on artificial surfaces:structure and dynamics. Environmental Microbiology, 15(11):2 879-2 893, https://doi.org/10.1111/1462-2920.12186.
Shi X B, Yan W, Xu D K, Yan M C, Yang C G, Shan Y Y, Yang K. 2018. Microbial corrosion resistance of a novel Cubearing pipeline steel. Journal of Materials Science & Technology, 34(12):2 480-2 491, https://doi.org/10.1016/j.jmst.2018.05.020.
Smit E, Leeflang P, Wernars K. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiology Ecology, 23(3):249-261, https://doi.org/10.1111/j.1574-6941.1997.tb00407.x.
Southwell C R, Alexander A L. 1970. Corrosion of metals in tropical waters, structural ferrous metals. Materials Protection, 9(1):14-23.
Sun D, Xu D K, Yang C G, Chen J, Shahzad M B, Sun Z Q, Zhao J L, Gu T Y, Yang K, Wang G X. 2016. Inhibition of Staphylococcus aureus biofilm by a copper-bearing 317LCu stainless steel and its corrosion resistance. Materials Science & Engineering C, 69:744-750, https://doi.org/10.1016/j.msec.2016.07.050.
Taylor A A, Walker S L. 2016. Effects of copper particles on a model septic system's function and microbial community.Water Research, 91:350-360, https://doi.org/10.1016/j.watres.2016.01.014.
Utgikar V P, Tabak H H, Haines J R, Govind R. 2003.Quantification of toxic and inhibitory impact of copper and zinc on mixed cultures of sulfate-reducing bacteria.Biotechnology & Bioengineering, 82(3):306-312, https://doi.org/10.1002/bit.10575.
Volkland H P, Harms H, Knopf K, Wanner O, Zehnder A J B. 2000.Corrosion inhibition of mild steel by bacteria. Biofouling, 15(4):287-297, https://doi.org/10.1080/08927010009386319.
Von Wolzogen Kühr C A H, Van der Vlugt I S. 1934. The graphitization of cast iron as an electrobiochemical process in anaerobic soils. Hague, 18:147-165.
Voordouw G. 2011. Production-related petroleum microbiology:progress and prospects. Current Opinion in Biotechnology, 22(3):401-405, https://doi.org/10.1016/j.copbio.2010.12.005.
Wang Y P, Li Q B, Shi J Y, Lin Q, Chen X C, Wu W X, Chen Y X. 2008. Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator. Soil Biology and Biochemistry, 40(5):1 167-1 177, https://doi.org/10.1016/j.soilbio.2007.12.010.
Wang Y P, Shi J Y, Wang H, Lin Q, Chen X C, Chen Y X. 2007.The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter. Ecotoxicology & Environmental Safety, 67(1):75-81, https://doi.org/10.1016/j.ecoenv.2006.03.007.
Wang Y Y, Qin J, Zhou S, Lin X M, Ye L, Song C K, Yan Y. 2015.Identification of the function of extracellular polymeric substances (EPS) in denitrifying phosphorus removal sludge in the presence of copper ion. Water Research, 73:252-264, https://doi.org/10.1016/j.watres.2015.01.034.
Warnes S L, Caves V, Keevil C W. 2012. Mechanism of copper surface toxicity in Escherichia coli O157:H7 and Salmonella involves immediate membrane depolarization followed by slower rate of DNA destruction which differs from that observed for Gram-positive bacteria.Environmental Microbiology, 14(7):1 730-1 743, https://doi.org/10.1111/j.1462-2920.2011.02677.x.
Webster N S, Webb R I, Ridd M J, Hill R T, Negri A P. 2001.The effects of copper on the microbial community of a coral reef sponge. Environmental Microbiology, 3(1):19-31, https://doi.org/10.1046/j.1462-2920.2001.00155.x.
Wu J J, Zhang D, Wang P, Cheng Y, Sun S M, Sun Y, Chen S Q. 2016. The influence of Desulfovibrio sp. and Pseudoalteromonas sp. on the corrosion of Q235 carbon steel in natural seawater. Corrosion Science, 112:552-562, https://doi.org/10.1016/j.corsci.2016.04.047.
Xia J, Yang C G, Xu D K, Sun D, Li N, Sun Z Q, Li Q, Gu T Y, Yang K. 2015. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm. Biofouling, 31(6):481-492, https://doi.org/10.1080/08927014.2015.1062089.
Xiang Y, Wu P X, Zhu N W, Zhang T, Liu W, Wu J H, Li P. 2010. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. Journal of Hazardous Materials, 184(1-3):812-818, https://doi.org/10.1016/j.jhazmat.2010.08.113.
Xie X H. 2010. Distribution of Heavy Metal Chemical Speciations and Microbial Diversity in Contaminated Soils of Dexing Copper Mine. Donghua University, Shanghai, China. (in Chinese with English abstract)
Xu D K, Li Y C, Gu T Y. 2016. Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry, 110:52-58, https://doi.org/10.1016/j.bioelechem.2016.03.003.
Xu D K, Xia J, Zhou E Z, Zhang D W, Li H B, Yang C G, Li Q, Lin H, Li X G, Yang K. 2017. Accelerated corrosion of 2205 duplex stainless steel caused by marine aerobic Pseudomonas aeruginosa biofilm. Bioelectrochemistry, 113:1-8, https://doi.org/10.1016/j.bioelechem.2016.08.001.
Xu D K, Zhou E Z, Zhao Y, Li H B, Zhang D W, Yang C G, Lin H, Li X G, Yang K. 2018. Enhanced resistance of 2205 Cu-bearing duplex stainless steeltowards microbiologically influenced corrosion by marine aerobic Pseudomonas aeruginosa biofilms. Journal of Materials Science & Technology, 34(8):1 325-1 336, https://doi.org/10.1016/j.jmst.2017.11.025.
Yadav K K, Mandal A K, Chakraborty R. 2013. Copper susceptibility in Acinetobacter junii BB1A is related to the production of extracellular polymeric substances.Antonie Van Leeuwenhoek, 104(2):261-269, https://doi.org/10.1007/s10482-013-9946-9.
Yang H Y, Huang G Q, Wang J. 2009. Influence of oceanic biofouling on corrosion of carbon steel in seawater. Corrosion& Protection, 30(2):78-80. (in Chinese with English abstract)
Zhang P Y, Xu D K, Li Y C, Yang K, Gu T Y. 2015. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry, 101:14-21, https://doi.org/10.1016/j.bioelechem.2014.06.010.
Zhao Y G, Feng G, Bai J, Chen M, Maqbool F. 2014. Effect of copper exposure on bacterial community structure and function in the sediments of Jiaozhou Bay, China. World Journal of Microbiology & Biotechnology, 30(7):2 033-2 043, https://doi.org/10.1007/s11274-014-1628-x.
Copyright © Haiyang Xuebao