Cite this paper:
HONG Pei, GONG Shihao, WANG Chunbo, SHU Yilin, WU Xingqiang, TIAN Cuicui, Oscar Omondi DONDE, CAI Pei, WU Huaming, XIAO Bangding. Effects of organic carbon consumption on denitrifier community composition and diversity along dissolved oxygen vertical profiles in lake sediment surface[J]. Journal of Oceanology and Limnology, 2020, 38(3): 733-744

Effects of organic carbon consumption on denitrifier community composition and diversity along dissolved oxygen vertical profiles in lake sediment surface

HONG Pei1,2, GONG Shihao1,2, WANG Chunbo1,2, SHU Yilin3, WU Xingqiang1,2, TIAN Cuicui1,2, Oscar Omondi DONDE1,2, CAI Pei1,2, WU Huaming1,2, XIAO Bangding1,2
1 Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Life Sciences, Anhui Normal University, Wuhu 241000, China
Abstract:
At present, the understanding of the dynamics of denitrifiers at different dissolved oxygen (DO) layers under organic carbon consumption within the surface sediments remains inadequate. In this study, high-throughput sequencing and quantitative PCR targeting nirS gene were used to analyze the denitrifier abundance dynamics, community composition, and structure for aerobic (DO 0.5-6.9 mg/L), hypoxic-anoxic (DO 0-0.5 mg/L), and anoxic (DO 0 mg/L) layers in surface sediments under organic carbon consumption. Based on the analysis of nirS gene abundance, the values of denitrifying bacteria decreased with organic carbon consumption at different DO layers. When the bacterial species abundance at the genus level were compared between the high-carbon and low-carbon sediments, there was significant increase in 6 out of 36, 7 out of 36 and 6 out of 36 genera respectively for the aerobic, hypoxic-anoxic and anoxic layers. On the other hand, 14 out of 36, 9 out of 36 and 15 out of 36 genera showed significant decrease in bacterial species abundance respectively for the aerobic, hypoxic-anoxic and anoxic layers. Additionally, 14 out of 36, 20 out of 36, and 15 out of 36 genera had no change in bacterial species abundance respectively for the aerobic, hypoxic-anoxic, and anoxic layers. This indicates that the carbon utilization ability of different denitrifiers on each DO layers was generally different from each other. Diversity of denitrifying bacteria also presented significant differences in different DO layers between the high- and low-carbon content sediment layers. Moreover, under the high-carbon and low-carbon content, the abundance of nirS gene showed a high peak within the hypoxic-anoxic regions, suggesting that this region might be the main distribution area for the denitrifying bacteria within the surface sediments. Furthermore, community of unique denitrifiers occurred in different DO layers and the adaptive changes of the denitrifier community followed the organic carbon consumption.
Key words:    eutrophic freshwater lake|surface sediments|dissolved oxygen profiles|denitrifier|organic carbon consumption   
Received: 2019-04-18   Revised: 2019-07-24
Tools
PDF (1057 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HONG Pei
Articles by GONG Shihao
Articles by WANG Chunbo
Articles by SHU Yilin
Articles by WU Xingqiang
Articles by TIAN Cuicui
Articles by Oscar Omondi DONDE
Articles by CAI Pei
Articles by WU Huaming
Articles by XIAO Bangding
References:
Ben Maamar S, Aquilina L, Quaiser A, Pauwels H, MichonCoudouel S, Vergnaud-Ayraud V, Labasque T, Roques C, Abbott B W, Dufresne A. 2015. Groundwater isolation governs chemistry and microbial community structure along hydrologic flowpaths. Front. Microbiol., 6:1 457, https://doi.org/10.3389/fmicb.2015.01457.
Bier R L, Voss K A, Bernhardt E S. 2015. Bacterial community responses to a gradient of alkaline mountaintop mine drainage in Central Appalachian streams. ISME J., 9(6):1 378-1 390, https://doi.org/10.1038/ismej.2014.222.
Braker G, Ayala-del-Río H L, Devol A H, Fesefeldt A, Tiedje J M. 2001. Community structure of denitrifiers, bacteria, and archaea along redox gradients in Pacific northwest marine sediments by terminal restriction fragment length polymorphism analysis of amplified nitrite reductase(nirS) and 16S rRNA genes. Appl. Environ. Microbiol., 67(4):1 893-1 901, https://doi.org/10.1128/AEM.67.4.1893-1901.2001.
Braker G, Fesefeldt A, Witzel K P. 1998. Development of PCR primer systems for amplification of nitrite reductase genes(nirK and nirS) to detect denitrifying bacteria in environmental samples. Appl. Environ. Microbiol., 64(10):3 769-3 775.
Bulow S E, Francis C A, Jackson G A, Ward B B. 2008.Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays. Environ. Microbiol., 10(11):3 057-3 069, https://doi.org/10.1111/j.1462-2920.2008.01765.x.
Cao Y F, Zhang C S, Rong H W, Zheng G L, Zhao L M. 2017. The effect of dissolved oxygen concentration (DO) on oxygen diffusion and bacterial community structure in moving bed sequencing batch reactor (MBSBR). Water Res., 108:86-94, https://doi.org/10.1016/j.watres.2016.10.063.
Carlisle D M, Clements W H. 2005. Leaf litter breakdown, microbial respiration and shredder production in metalpolluted streams. Freshw. Biol., 50(2):380-390, https://doi.org/10.1111/j.1365-2427.2004.01323.x.
Chen X C, Huang Y Y, Chen G Q, Li P P, Shen Y S, Davis T W. 2018. The secretion of organics by living Microcystis under the dark/anoxic condition and its enhancing effect on nitrate removal. Chemosphere, 196:280-287, https://doi.org/10.1016/j.chemosphere.2017.12.197.
Chen Z G, Wang X J, Yang Y Y, Mirino M W, Yuan Y L. 2016.Partial nitrification and denitrification of mature landfill leachate using a pilot-scale continuous activated sludge process at low dissolved oxygen. Bioresour. Technol., 218:580-588, https://doi.org/10.1016/j.biortech.2016.07.008.
Christensen P B, Nielsen L P, Revsbech N P, Sørensen J. 1989.Microzonation of denitrification activity in stream sediments as studied with a combined oxygen and nitrous oxide microsensor. Appl. Environ. Microbiol., 55(5):1 234-1 241.
Coyotzi S, Doxey A C, Clark I D, Lapen D R, Van Cappellen P, Neufeld J D. 2017. Agricultural soil denitrifiers possess extensive nitrite reductase gene diversity. Environ.Microbiol.,19(3):1 189-1 208, https://doi.org/10.1111/1462-2920.13643.
Fan M C, Lin Y B, Huo H B, Liu Y, Zhao L, Wang E T, Chen W M, Wei G H. 2016. Microbial communities in riparian soils of a settling pond for mine drainage treatment. Water Res., 96:198-207, https://doi.org/10.1016/j.watres.2016.03.061.
Francis C A, O'Mullan G D, Cornwell J C, Ward B B. 2013.Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. Front. Microbiol., 4:237, https://doi.org/10.3389/fmicb.2013.00237.
Gao J, Hou L J, Zheng Y L, Liu M, Yin G Y, Li X F, Lin X B, Yu C D, Wang R, Jiang X F, Sun X R. 2016. nirS-encoding denitrifier community composition, distribution, and abundance along the coastal wetlands of China. Appl.Microbiol. Biotechnol., 100(19):8 573-8 582, https://doi.org/10.1007/s00253-016-7659-5.
Groffman P M, Butterbach-Bahl K, Fulweiler R W, Gold A J, Morse J L, Stander E K, Tague C, Tonitto C, Vidon P. 2009. Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93(1-2):49-77, https://doi.org/10.1007/s10533-008-9277-5.
Huang S, Chen C, Yang X, Wu Q, Zhang R. 2011. Distribution of typical denitrifying functional genes and diversity of the nirS-encoding bacterial community related to environmental characteristics of river sediments.Biogeosciences, 8:3 041-3 051, https://doi.org/10.5194/bg-8-3041-2011.
Jenerette G D, Chatterjee A. 2012. Soil metabolic pulses:water, substrate, and biological regulation. Ecology, 93(5):959-966, https://doi.org/10.1890/11-1527.1.
Jia Z M, Liu T, Xia X H, Xia N. 2016. Effect of particle size and composition of suspended sediment on denitrification in river water. Sci. Total Environ., 541:934-940, https://doi.org/10.1016/j.scitotenv.2015.10.012.
Kandeler E, Deiglmayr K, Tscherko D, Bru D, Philippot L. 2006. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol., 72(9):5 957-5 962, https://doi.org/10.1128/AEM.00439-06.
Kartal B, Rattray J, van Niftrik L A, van de Vossenberg J, Schmid M C, Webb R I, Schouten S, Fuerst J A, Damsté J S, Jetten M S M, Strous M. 2007. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol., 30(1):39-49, https://doi.org/10.1016/j.syapm.2006.03.004.
Kim O S, Imhoff J F, Witzel K P, Junier P. 2011. Distribution of denitrifying bacterial communities in the stratified water column and sediment-water interface in two freshwater lakes and the Baltic Sea. Aquat. Ecol., 45(1):99-112, https://doi.org/10.1007/s10452-010-9335-7.
Knowles R. 1982. Denitrification. Microbiol. Rev., 46(1):43-70.Laverman A M, Canavan R W, Slomp C P, van Cappellen P. 2007. Potential nitrate removal in a coastal freshwater sediment (Haringvliet Lake, The Netherlands) and response to salinization. Water Res., 41(14):3 061-3 068, https://doi.org/10.1016/j.watres.2007.04.002.
Lee K C, Rittmann B E. 2003. Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollowfiber membrane-biofilm reactor. Water Res., 37(7):1 551-1 556, https://doi.org/10.1016/S0043-1354(02)00519-5.
Li E C, Lu S G. 2017. Denitrification processes and microbial communities in a sequencing batch reactor treating nanofiltration (NF) concentrate from coking wastewater.Water Sci. Technol., 76(11-12):3 289-3 298, https://doi.org/10.2166/wst.2017.493.
Liu J X, Li C, Jing J H, Zhao P Y, Luo Z M, Cao M W, Ma Z Z, Jia T, Chai B F. 2018b. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water Res., 133:99-109, https://doi.org/10.1016/j.watres.2018.01.014.
Liu W Z, Yao L, Jiang X L, Guo L D, Cheng X L, Liu G H. 2018a. Sediment denitrification in Yangtze lakes is mainly influenced by environmental conditions but not biological communities. Sci. Total. Environ., 616-617:978-987, https://doi.org/10.1016/j.scitotenv.2017.10.221.
Lu H J, Chandran K, Stensel D. 2014. Microbial ecology of denitrification in biological wastewater treatment. Water Res., 64:237-254, https://doi.org/10.1016/j.watres.2014.06.042.
Mao G Z, Chen L, Yang Y Y, Wu Z, Tong T L, Liu Y, Xie S G. 2017. Vertical profiles of water and sediment denitrifiers in two plateau freshwater lakes. Appl. Microbiol.Biotechnol., 101(8):3 361-3 370, https://doi.org/10.1007/s00253-016-8022-6.
McKenney D J, Drury C F, Wang S W. 2001. Effects of oxygen on denitrification inhibition, repression, and derepression in soil columns. Soil Sci. Soc. Am. J., 65:126-132, https://doi.org/10.2136/sssaj2001.651126x.
Nancharaiah Y V, Joshi H M, Hausner M, Venugopalan V P. 2008. Bioaugmentation of aerobic microbial granules with Pseudomonas putida carrying TOL plasmid.Chemosphere, 71(1):30-35, https://doi.org/10.1016/j.chemosphere.2007.10.062.
Nielsen L P, Christensen P B, Revsbech N P, Sørensen J. 1990a. Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microb. Ecol., 19(1):63-72, https://doi.org/10.1007/BF02015054.
Nielsen L P, Christensen P B, Revsbech N P, Sørensen J. 1990b. Denitrification and photosynthesis in stream sediment studied with microsensor and wholecore techniques. Limnol. Oceanogr., 35(5):1 135-1 144, https://doi.org/10.4319/lo.1990.35.5.1135.
Nolan B T. 2001. Relating nitrogen sources and aquifer susceptibility to nitrate in shallow ground waters of the United States. Groundwater, 39(2):290-299, http://dx.doi.org/10.1111/j.1745-6584.2001.tb02311.x.
Puckett L J, Tesoriero A J, Dubrovsky N M. 2011. Nitrogen contamination of surficial aquifers-a growing legacy.Environ. Sci. Technol., 45(3):839-844, https://doi.org/10.1021/es1038358.
Qin H Y, Han C, Jin Z W, Wu L, Deng H, Zhu G W, Zhong W H. 2018. Vertical distribution and community composition of anammox bacteria in sediments of a eutrophic shallow lake. J. Appl. Microbiol., 125(1):121-132, https://doi.org/10.1111/jam.13758.
Qiu T L, Xu Y, Gao M, Han M L, Wang X M. 2017. Bacterial community dynamics in a biodenitrification reactor packed with polylactic acid/poly (3-hydroxybutyrate-co-3-hydroxyvalerate) blend as the carbon source and biofilm carrier. J. Biosci. Bioeng., 123(5):606-612, https://doi.org/10.1016/j.jbiosc.2016.12.007.
Remmas N, Melidis P, Katsioupi E, Ntougias S. 2016. Effects of high organic load on amoA and nirS gene diversity of an intermittently aerated and fed membrane bioreactor treating landfill leachate. Bioresour. Technol., 220:557-565, https://doi.org/10.1016/j.biortech.2016.09.009.
Rong N, Shan B Q, Wang C. 2016. Determination of sediment oxygen demand in the Ziya River watershed, China:based on laboratory core incubation and microelectrode measurements. Int. J. Environ. Res. Public Health, 13(2):232, https://doi.org/10.3390/ijerph13020232.
Saarenheimo J, Aalto S L, Rissanen A J, Tiirola M. 2017.Microbial community response on wastewater discharge in boreal lake sediments. Front. Microbiol., 8:750, https://doi.org/10.3389/fmicb.2017.00750.
Santschi P, Höhener P, Benoit G, Buchholtz-ten Brink M. 1990. Chemical processes at the sediment-water interface.Mar. Chem., 30:269-315, https://doi.org/10.1016/0304-4203(90)90076-O.
Schmid M, Walsh K, Webb R, Rijpstra W I, van de PasSchoonen K, Verbruggen M J, Hill T, Moffett B, Fuerst J, Schouten S, Sinninghe Damsté J S, Harris J, Shaw P, Jetten M, Strous M. 2003. Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp.nov., two new species of anaerobic ammonium oxidizing bacteria. Syst. Appl. Microbiol., 26(4):529-538, https://doi.org/10.1078/072320203770865837.
Seitzinger S, Harrison J A, Böhlke J K, Bouwman A F, Lowrance R, Peterson B, Tobias C, Van Drecht G. 2006.Denitrification across landscapes and waterscapes:a synthesis. Ecol. Appl., 16(6):2 064-2 090, https://doi.org/10.1890/1051-0761(2006)016[2064:DALAWA]2.0.CO;2.
Si Z H, Song X S, Wang Y H, Cao X, Zhao Y F, Wang B D, Chen Y, Arefe A. 2018. Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources:denitrification efficiency and bacterial community structure. Bioresour. Technol., 267:416-425, https://doi.org/10.1016/j.biortech.2018.07.029.
Sirivedhin T, Gray K A. 2006. Factors affecting denitrification rates in experimental wetlands:field and laboratory studies. Ecol. Eng., 26(2):167-181, https://doi.org/10.1016/j.ecoleng.2005.09.001.
Srinandan C S, D'souza G, Srivastava N, Nayak B B, Nerurkar A S. 2012. Carbon sources influence the nitrate removal activity, community structure and biofilm architecture.Bioresour. Technol., 117:292-299, https://doi.org/10.1016/j.biortech.2012.04.079.
Sweerts J P R A, de Beer D. 1989. Microelectrode measurements of nitrate gradients in the littoral and profundal sediments of a meso-eutrophic lake (lake Vechten, the Netherlands).Appl. Environ. Microbiol., 55(3):754-757.
Thomsen T R, Kong Y H, Nielsen P H. 2007. Ecophysiology of abundant denitrifying bacteria in activated sludge.FEMS Microbiol. Ecol., 60(3):370-382, https://doi.org/10.1111/j.1574-6941.2007.00309.x.
Tian C C, Wang C B, Tian Y Y, Wu X Q, Xiao B D. 2015.Vertical distribution of Fe and Fe(III)-reducing bacteria in the sediments of Lake Donghu, China. Can. J. Microbiol., 61(8):575-583, https://doi.org/10.1139/cjm-2015-0129.
Van Rijn J, Tal Y, Schreier H J. 2006. Denitrification in recirculating systems:theory and applications. Aquac.Eng., 34(3):364-376, https://doi.org/10.1016/j.aquaeng.2005.04.004.
Waki M, Yasuda T, Fukumoto Y, Béline F, Magrí A. 2018.Treatment of swine wastewater in continuous activated sludge systems under different dissolved oxygen conditions:reactor operation and evaluation using modelling. Bioresour. Technol., 250:574-582, https://doi.org/10.1016/j.biortech.2017.11.078.
Wang C, Shan B Q, Zhang H, Rong N. 2014. Analyzing sediment dissolved oxygen based on microprofile modeling. Environ. Sci. Pollut. Res. Int., 21(17):10 320-10 328, https://doi.org/10.1007/s11356-014-2875-y.
Wang X W, Zhang Y, Zhang T T, Zhou J T. 2016. Effect of dissolved oxygen on elemental sulfur generation in sulfide and nitrate removal process:characterization, pathway, and microbial community analysis. Appl. Microbiol.Biotechnol., 100(6):2 895-2 905, https://doi.org/10.1007/s00253-015-7146-4.
Wen X, Gong B Z, Zhou J, He Q, Qing X X. 2017. Efficient simultaneous partial nitrification, anammox and denitrification (SNAD) system equipped with a real-time dissolved oxygen (DO) intelligent control system and microbial community shifts of different substrate concentrations. Water Res., 119:201-211, https://doi.org/10.1016/j.watres.2017.04.052.
Wu S F, Wu Z, Liang Z Y, Liu Y, Wang Y L. 2019. Denitrification and the controlling factors in Yunnan Plateau Lakes(China):exploring the role of enhanced internal nitrogen cycling by algal blooms. J. Environ. Sci., 76:349-358, https://doi.org/10.1016/j.jes.2018.05.028.
Wu X, Liu G, Butterbach-Bahl K, Fu B, Zheng X, Brüggemann N. 2013. Effects of land cover and soil properties on denitrification potential in soils of two semi-arid grasslands in Inner Mongolia, China. J. Arid Environ., 92:98-101, https://doi.org/10.1016/j.jaridenv.2013.02.003.
Xu N, Tan G C, Wang H Y, Gai X P. 2016. Effect of biochar additions to soil on nitrogen leaching, microbial biomass and bacterial community structure. Eur. J. Soil. Biol., 74:1-8, https://doi.org/10.1016/j.ejsobi.2016.02.004.
Xu Z S, Dai X H, Chai X L. 2018. Effect of different carbon sources on denitrification performance, microbial community structure and denitrification genes. Sci. Total Environ., 634:195-204, https://doi.org/10.1016/j.scitotenv.2018.03.348.
Yang J K, Cheng Z B, Li J, Miao L H. 2013. Community composition of nirS-type denitrifier in a shallow eutrophic lake. Microb. Ecol., 66(4):796-805, https://doi.org/10.1007/s00248-013-0265-5.
Zou Y, Xu X C, Wang X J, Yang F L, Zhang S S. 2018.Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD)process with a photobioreactor (PBR) for biomass production and generated dissolved oxygen (DO)recycling. Bioresour. Technol., 268:539-548, https://doi.org/10.1016/j.biortech.2018.08.015.
Zumft W G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev., 61(4):533-616, https://doi.org/10.1016/j.ccr.2004.08.030.
Copyright © Haiyang Xuebao