Cite this paper:
XU Anqi, YU Fei, NAN Feng, REN Qiang. Characteristics of subsurface mesoscale eddies in the northwestern tropical Pacific Ocean from an eddy-resolving model[J]. Journal of Oceanology and Limnology, 2020, 38(5): 1421-1434

Characteristics of subsurface mesoscale eddies in the northwestern tropical Pacific Ocean from an eddy-resolving model

XU Anqi1,2,3, YU Fei1,2,3,4,5, NAN Feng1,3,4,5, REN Qiang1,2,3
1 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Ocean Circulation and Waves, Chinese Academy of Sciences, Qingdao 266071, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
5 Marine Dynamic Process and Climate Function Laboratory, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China
Abstract:
Subsurface eddies (SSEs) are common features of the ocean interior. They are particularly abundant in oceanic basins and the vicinity of major intermediate water outflows. They are responsible for subsurface transport of mass, heat, and salt. Analysis of high-resolution general circulation model data has revealed the existence of subsurface anticyclonic eddies (SSAEs) and subsurface cyclonic eddies (SSCEs) in the northwestern tropical Pacific Ocean. SSEs are abundant east of the Philippines (0°-22°N, 120°E-140°E) and in latitude bands between 9°N-17°N east of 140°E. The composite structure of SSEs was investigated. SSEs had a core at about 400-m water depth and their maximum meridional velocity exceeded 10 cm/s. They exhibited two cores with different salinity polarities in the surface and subsurface. Additionally, spatial distributions of heat transport induced by SSEs in the northwestern tropical Pacific were presented for the first time. A net equatorward heat flux toward a temperature up-gradient was observed. The analysis of eddy-mean flow interactions revealed that the circulation is baroclinically and barotropically unstable at different depths and to differing degrees. The energy conversions suggest that both barotropic and baroclinic instabilities are responsible for SSE generation east of the Philippines, whereas baroclinic instability caused by a horizontal density gradient and vertical eddy heat flux are important between 9°N and 17°N east of 140°E. Meridional movement of the north equatorial current and the north equatorial undercurrent can contribute to SSE generation in our study region.
Key words:    the northwestern tropical Pacific Ocean|subsurface eddies|composite structures|heat transport|energy source   
Received: 2019-12-03   Revised: 2020-02-04
Tools
PDF (6110 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by XU Anqi
Articles by YU Fei
Articles by NAN Feng
Articles by REN Qiang
References:
Brannigan L, Johnson H, Lique C, Nycander J, Nilsson J. 2017. Generation of subsurface anticyclones at Arctic surface fronts due to a surface stress. Journal of Physical Oceanography, 47(11):2 653-2 671, https://doi.org/10.1175/jpo-d-17-0022.1.
Brearley J A, Sheen K L, Naveira Garabato A C, Smeed D A, Speer K G, Thurnherr A M, Meredith M P, Waterman S. 2014. Deep boundary current disintegration in Drake Passage. Geophysical Research Letters, 41(1):121-127, https://doi.org/10.1002/2013GL058617.
Chaigneau A, Le Texier M, Eldin G, Grados C, Pizarro O. 2011.Vertical structure of mesoscale eddies in the eastern South Pacific Ocean:a composite analysis from altimetry and Argo profiling floats. Journal of Geophysical Research, 116(C16):C11025, https://doi.org/10.1029/2011jc007134.
Chelton D B, Schlax M G, Samelson R M. 2011. Global observations of nonlinear mesoscale eddies. Progress in Oceanography, 91(2):167-216, https://doi.org/10.1016/j.pocean.2011.01.002.
Chelton D B, Schlax M G, Samelson R M, de Szoeke R A. 2007. Global observations of large oceanic eddies.Geophysical Research Letters, 34(15):C15606, https://doi.org/10.1029/2007gl030812.
Chen G X, Wang D X, Dong C M, Zu T T, Xue H J, Shu Y Q, Chu X Q, Qi Y Q, Chen H. 2015a. Observed deep energetic eddies by seamount wake. Scientific Reports, 5:17416, https://doi.org/10.1038/srep17416.
Chen L J, Jia Y L, Liu Q Y. 2015b. Mesoscale eddies in the Mindanao Dome region. Journal of Oceanography, 71(1):133-140, https://doi.org/10.1007/s10872-014-0255-3.
Chiang T L, Wu C R, Qu T D, Hsin Y C. 2015. Activities of 50-80 day subthermocline eddies near the Philippine coast. Journal of Geophysical Research, 120(5):3 606-3 623, https://doi.org/10.1002/2013jc009626.
Collins C A, Margolina T, Rago T A, Ivanov L. 2013. Looping RAFOS floats in the California current system. Deep Sea Research Part II:Topical Studies in Oceanography, 85:42-61, https://doi.org/10.1016/j.dsr2.2012.07.027.
Combes V, Hormazabal S, Di Lorenzo E. 2015. Interannual variability of the subsurface eddy field in the Southeast Pacific. Journal of Geophysical Research, 120(7):4 907-4 924, https://doi.org/10.1002/2014jc010265.
Damien P, Bosse A, Testor P, Marsaleix P, Estournel C. 2017.Modeling postconvective submesoscale coherent vortices in the northwestern Mediterranean Sea. Journal of Geophysical Research, 122(12):9 937-9 961, https://doi.org/10.1002/2016jc012114.
Dong C M, McWilliams J C, Liu Y, Chen D K. 2014. Global heat and salt transports by eddy movement. Nature Communications, 5:3 294, https://doi.org/10.1038/ncomms4294.
Dutrieux P. 2009. Tropical Western Pacific Currents and the Origin of Intraseasonal Variability Below the Thermocline.University of Hawaii at Manoa, Honolulu, USA, 150p.
Filyushkin B N, Sokolovskiy M A, Kozhelupova N G, Vagina I M. 2014. Lagrangian methods for observation of intrathermocline eddies in ocean. Oceanology, 54(6):688-694, https://doi.org/10.1134/s0001437014050051.
Gaube P, Chelton D B, Strutton P G, Behrenfeld M J. 2013.Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies. Journal of Geophysical Research, 118(12):6 349-6 370, https://doi.org/10.1002/2013jc009027.
Gordon A L, Shroyer E, Murty V S N. 2017. An intrathermocline eddy and a tropical cyclone in the Bay of Bengal. Scientific Reports, 7:46218, https://doi.org/10.1038/srep46218.
Isern-Fontanet J, Font J, García-Ladona E, Emelianov M, Millot C, Taupier-Letage I. 2004. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep Sea Research Part II:Topical Studies in Oceanography, 51(25-26):3 009-3 028, https://doi.org/10.1016/j.dsr2.2004.09.013.
Isern-Fontanet J, García-Ladona E, Font J. 2006. Vortices of the Mediterranean Sea:an altimetric perspective. Journal of Physical Oceanography, 36(1):87-103, https://doi.org/10.1175/jpo2826.1.
Johnson G C, McTaggart K E. 2010. Equatorial pacific 13℃ water eddies in the eastern subtropical South Pacific Ocean. Journal of Physical Oceanography, 40(1):226-236, https://doi.org/10.1175/2009jpo4287.1.
Kashino Y, Atmadipoera A, Kuroda Y, Lukijanto. 2013.Observed features of the Halmahera and Mindanao Eddies. Journal of Geophysical Research, 118(12):6 543-6 560, https://doi.org/10.1002/2013jc009207.
Kurian J, Colas F, Capet X, McWilliams J C, Chelton D B. 2011. Eddy properties in the California Current system.Journal of Geophysical Research, 116(C8):C08027, https://doi.org/10.1029/2010jc006895.
Magalhães F C, Azevedo J L L, Oliveira L R. 2017. Energetics of eddy-mean flow interactions in the Brazil current between 20°S and 36°S. Journal of Geophysical Research, 122(8):6 129-6 146, https://doi.org/10.1002/2016jc012609.
Masumoto Y, Sasaki H, Kagimoto T, Komori N, Ishida A, Sasai Y, Miyama T, Motoi T, Mitsudera H, Takahashi K, Sakuma H, Yamagata T. 2004. A fifty-year eddy-resolving simulation of the world ocean-preliminary outcomes of OFES (OGCM for the Earth simulator). Journal of the Earth Simulator, 1:35-56.
McGillicuddy Jr D J. 2015. Formation of intrathermocline lenses by eddy-wind interaction. Journal of Physical Oceanography, 45(2):606-612, https://doi.org/10.1175/jpo-d-14-0221.1.
Nan F, Yu F, Wei C J, Ren Q, Fan C H. 2017. Observations of an extra-large subsurface anticyclonic eddy in the northwestern Pacific subtropical gyre. Journal of Marine Science:Research & Development, 7:234, https://doi.org/10.4172/2155-9910.1000234.
Oey L Y. 2008. Loop current and deep eddies. Journal of Physical Oceanography, 38(7):1 426-1 449, https://doi.org/10.1175/2007jpo3818.1.
Pelland N A, Eriksen C C, Lee C M. 2013. Subthermocline eddies over the Washington continental slope as observed by seagliders, 2003-09. Journal of Physical Oceanography, 43(10):2 025-2 053, https://doi.org/10.1175/jpo-d-12-086.1.
Qiu B, Rudnick D L, Cerovecki I, Cornuelle B D, Chen S M, Schonau M C, McClean J L, Gopalakrishnan G. 2015.The Pacific north equatorial current:new insights from the origins of the Kuroshio and Mindanao Currents(OKMC) Project. Oceanography, 28(4):24-33, https://doi.org/10.5670/oceanog.2015.78.
Qu T D, Chiang T L, Wu C R, Dutrieux P, Hu D X. 2012.Mindanao current/undercurrent in an eddy-resolving GCM. Journal of Geophysical Research, 117(C6):C06026, https://doi.org/10.1029/2011jc007838.
Qu T D, Kagimoto T, Yamagata T. 1997. A subsurface countercurrent along the east coast of Luzon. Deep Sea Research Part I:Oceanographic Research Papers, 44(3):413-423, https://doi.org/10.1016/s0967-0637(96)00121-5.
Qu T D, Lukas R. 2003. The bifurcation of the North Equatorial Current in the Pacific. Journal of Physical Oceanography, 33(1):5-18, https://doi.org/10.1175/1520-0485(2003)033<0005:tbotne>2.0.co;2.
Radko T, Sisti C. 2017. Life and demise of intrathermocline mesoscale vortices. Journal of Physical Oceanography, 47(12):3 087-3 103, https://doi.org/10.1175/jpo-d-17-0044.1.
Sasaki H, Nonaka M, Masumoto Y, Sasai Y, Uehara H, Sakuma H. 2008. An eddy-resolving hindcast simulation of the quasiglobal ocean from 1950 to 2003 on the Earth Simulator. In:High Resolution Numerical Modelling of the Atmosphere and Ocean, Hamilton K and Ohfuchi W eds. Chapter 10, pp.157-185, Springer, New York.
Schonau M C, Rudnick D L, Cerovecki I, Gopalakrishnan G, Cornuelle B D, McClean J L, Qiu B. 2015. The Mindanao current:mean structure and connectivity. Oceanography, 28(4):34-45, https://doi.org/10.5670/oceanog.2015.79.
Shapiro G I, Meschanov S L. 1991. Distribution and spreading of Red Sea water and salt lens formation in the northwest Indian Ocean. Deep Sea Research Part A. Oceanographic Research Papers, 38(1):21-34, https://doi.org/10.1016/0198-0149(91)90052-h.
Song L, Li Y L, Liu C Y, Wang F. 2017. Subthermocline anticyclonic gyre east of Mindanao and its relationship with the Mindanao Undercurrent. Chinese Journal of Oceanology and Limnology, 35(6):1 303-1 318, https://doi.org/10.1007/s00343-017-6111-8.
Thomas L N. 2008. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity. Dynamics of Atmospheres and Oceans, 45(3-4):252-273, https://doi.org/10.1016/j.dynatmoce.2008.02.002.
Thomsen S, Kanzow T, Krahmann G, Greatbatch R J, Dengler M, Lavik G. 2016. The formation of a subsurface anticyclonic eddy in the Peru-Chile Undercurrent and its impact on the near-coastal salinity, oxygen, and nutrient distributions. Journal of Geophysical Research, 121(1):476-501, https://doi.org/10.1002/2015jc010878.
Volkov D L, Lee T, Fu L L. 2008. Eddy-induced meridional heat transport in the ocean. Geophysical Research Letters, 35(20):L20601, https://doi.org/10.1029/2008gl035490.
von Storch J S, Eden C, Fast I, Haak H, Hernández-Deckers D, Maier-Reimer E, Marotzke J, Stammer D. 2012. An estimate of the Lorenz energy cycle for the world ocean based on the 1/10° STORM/NCEP simulation. Journal of Physical Oceanography, 42(12):2 185-2 205, https://doi.org/10.1175/jpo-d-12-079.1.
Xu A Q, Yu F, Nan F. 2019. Study of subsurface eddy properties in northwestern Pacific Ocean based on an eddy-resolving OGCM. Ocean Dynamics, 69(4):463-474, https://doi.org/10.1007/s10236-019-01255-5.
Yang H Y, Wu L X, Liu H L, Yu Y Q. 2013. Eddy energy sources and sinks in the South China Sea. Journal of Geophysical Research, 118(9):4 716-4 726, https://doi.org/10.1002/jgrc.20343.
Zhang Z G, Wang W, Qiu B. 2014. Oceanic mass transport by mesoscale eddies. Science, 345(6194):322-324, https://doi.org/10.1126/science.1252418.
Zhang Z G, Zhang Y, Wang W. 2017. Three-compartment structure of subsurface-intensified mesoscale eddies in the ocean. Journal of Geophysical Research, 122(3):1 653-1 664, https://doi.org/10.1002/2016jc012376.
Copyright © Haiyang Xuebao