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  Abstract        Nansi Lake and Hongze Lake are both water storage lakes along the East Route of the 
South-to-North Water Transfer project (ESNT). Frequent changes in hydrologic properties are responsible 
factors for controlling the zooplankton community assemblages in both lakes, so we studied the possible 
infl uence of water transfer and environmental factors on zooplankton community structure and abundance. 
Zooplankton assemblages were investigated seasonally for one year in both lakes; a total of 133 and 122 
zooplankton taxa were identifi ed in Nansi Lake and Hongze Lake, respectively. The most dominant rotifer 
species were littoral, e.g.,  Keratella   tecta ,  Keratella   valga  and  Lecane   lunaris  in Nansi Lake and  Brachionus  
 angularis ,  Brachionus   forfi cula  and  Polyarthra   vulgaris  in Hongze Lake. Comparatively, Nansi Lake had 
a higher Shannon-Wiener diversity index value (5.13), while Hongze Lake had a higher species richness 
index (4.21). The average number of zooplankton across seasons in Nansi Lake (protozoa: 774±63 ind./L, 
rotifers: 4 817±212 ind./L, cladocerans: 896±14 ind./L, copepod: 435±42 ind./L) was comparatively lower 
than Hongze Lake (protozoa: 1 238±63 ind./L, rotifers: 6 576±112 ind./L, cladocerans: 1 013±20 ind./L, 
copepod: 534±25 ind./L). Canonical correspondence analysis identifi ed diff ering environmental gradients 
that were most responsible for infl uencing zooplankton communities in the two lakes (Hongze Lake: NH 4 -N, 
total nitrogen, transparency and pH; Nansi: pH, temperature and total phosphorus). Frequent changes related 
to water transfer in lakes favoured the diversity of rotifers and protozoa communities. Zooplankton habitat 
preference, changes in community structure and opportunistic peaks and extinction of certain taxa were also 
observed in the study lakes. 
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 1 INTRODUCTION 

 Inter-basin water transfer has been applied around 
the world to alleviate water shortages in water-
defi cient areas. The diff erence in hydrologic properties 
between donor and recipient systems infl uences both 
abiotic (physical and chemical) and biotic (species 
interactions, habitat, species composition of plants 
and animals) features of the connected ecosystems 
(Gruberts et al., 2007; Kufel and Leśniczuk, 2014; 
Winemiller et al., 2015). Several studies have shown 

positive eff ects of water transfers, through decreasing 
phytoplankton concentrations and improvement of 
water quality in downstream reservoirs (Padisák et 
al., 2000; Hu et al., 2010; Zhai et al., 2010). Other 
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studies have reported negative implications of water 
transfer such as fl uctuations of the nutrient infl ux in 
recipient systems, including a signifi cant increase in 
silica, total iron and chlorophyll  a  content (Matsumura-
Tundisi and Tundisi, 2005; Fornarelli and Antenucci, 
2011). Water transfer can also negatively aff ect fi sh 
and invertebrate communities through increasing the 
likelihood of species invasions, possibly through the 
transfer of alien species and toxic cyanophytes into 
recipient systems (Matthews et al., 1996; Snaddon 
and Davies, 1998).  

 Zooplankton communities provide an ideal 
indicator of human disturbances in lake monitoring 
programs (Stemberger et al., 2001; Dodson et al., 
2005). In lacustrine habitats, zooplankton community 
structure and seasonal dynamics are determined by a 
variety of factors such as geographic location, the 
lake area, water depth, water current velocity, and 
presence of macrophytes. Lake morphological 
characteristics such as surface area and shape 
infl uence species composition and richness of 
zooplankton, mainly based on the available limnetic 
and littoral habitats in the lake (Fryer, 1985; Gasith 
and Gafny, 1990; Dodson, 1991, 1992; Karatayev et 
al., 2005; Padial et al., 2009). Additionally, fl uctuations 
in hydrological properties can either directly or 
indirectly aff ect biological communities such as 
zooplankton (Wolcox and Meeker, 1992; Betsill and 
Van Den Avyle, 1994; Poff  et al., 1997; Gruberts et 
al., 2007; Leira and Cantonati, 2008). Biotic factors 
(both bottom-up and top-down factors) (Carpenter et 
al., 1985; McQueen et al., 1986; Northcote, 1988; 
Vanni, 1988) and abiotic factors like water chemistry 
can also act as driving forces for structuring 
zooplankton communities (Johannsson et al., 1991; 
Pourriot et al., 1994). 

 In recent centuries, many aquatic sources have 
been strongly transformed as a result of intensive 
engineering and water diversion, and these kinds of 
activities caused deterioration of biodiversity. The 
zooplankton assemblages, as well as the other biotic 
communities that inhabit the aquatic ecosystems, 
constitute an important element of the food chain, and 
are eff ective indicators of the trophic conditions. 
Moreover, zooplankton communities are sensitive to 
anthropogenic impacts and their study may be useful 
in the prediction of long-term changes in lake 
ecosystems. To understand the ecological function in 
lakes, suffi  cient knowledge is required for all biotic 
elements, including zooplankton. The present study 
aims to identify the trends of zooplankton diversity 

and distribution in Nansi Lake and Hongze Lake and 
their relationships with environmental factors 
(physical and chemical features of the water). Two 
questions were answered: How did the water transfer 
aff ect the zooplankton community structure and 
distribution in water storage lakes (Nansi anid 
Hongze) along the East Route of the South-to-North 
Water Transfer Project (ESNT)? Which environmental 
factors were responsible for temporal changes of 
zooplankton community in both lakes? 

 2 MATERIAL AND METHOD 

 2.1 Study area 

 Nansi Lake and Hongze Lake are water storage 
lakes along the ESNT. The ESNT diverts water from 
the lower reaches of the Changjiang (Yangtze) River 
at Jiangdu near Yangzhou, Jiangsu Province, to the 
North China Plain, using the Grand Canal as the main 
conveyance channel. The ESNT also intersects and 
passes through Nansi and Hongze Lake during the 
transfer process. The ESNT was expected to increase 
the water levels of Nansi and Hongze Lake by 0.5 m, 
and the annual water exchange rate was expected to 
be 1.2 times after it became fully operational (Zhang, 
2009). The fi rst full East Route transfer was done in 
2013; during normal operation water passes through 
Hongze Lake and is conveyed to Nansi Lake. Nansi 
Lake has a dividing dam between the upper and lower 
lakes, and the water collects fi rst in lower Nansi Lake 
(Weishan) and then is lifted and moved to upper Nansi 
Lake. Comparatively, water depth is higher in Hongze 
Lake than in Nansi Lake. Additionally, water fl ow 
may cause there to be less macrophytes in Hongze 
Lake due to stronger water currents during transfer, 
while in Nansi Lake water is fi rst collected at the dam 
leading to comparatively weaker currents and more 
extensive macrophyte coverage. 

 Nansi Lake (34°36′N, 117°12′E) (Fig.1a) is located 
in the north of the Huaihe River basin in Shandong 
Province, China. It is a relatively large, shallow lake, 
with a total surface area (combined upper and lower 
lakes) of 1 266 km 2  and an average depth of 1.5 m. 
According to lake morphology, most of the area of 
Nansi Lake is covered by vegetation, providing more 
habitat heterogeneity for species colonization. 

 Hongze Lake (33°18′27″N 118°42′36″E) (Fig.1b) 
is the fourth largest freshwater lake in China, in the 
middle reach of the Huaihe River in Jiangsu Province 
with a total surface area of 1 960 km 2 . The mean water 
depth of the lake is 1.77 m, with the deepest sections 
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being around 4.37 m (Chu, 2001). The water volume 
is about 27.9×10 8  m 3 . The average elevation of the 
lake basin is around 4–8 m higher than the eastern 
plain of China. Approximately 73% of the lake water 
is contributed by the infl owing Huaihe River (Yang, 
1993). Hongze Lake is a transitional lake where water 
levels often undergo large fl uctuations both annually 
and seasonally (Wang and Chen, 1999). Overall, the 
macrophyte coverage in Hongze Lake is very low, 
although there remains some coverage in the northeast 
and southwest sections. Therefore, comparatively, the 
open water area of Hongze Lake is higher than Nansi 
Lake (Liu et al., 2009; Lin et al., 2017). 

 2.2 Physico-chemical environmental analysis 

 Physico-chemical environmental variables were 
measured for each sample site during zooplankton 
sampling. Water temperature (°C), pH, and dissolved 
oxygen (DO) (mg/L) were measured in-situ using a 
Yellow Springs Instrument (YSI proplus probe). 
Transparency (m) and water depth (m) were 
measured with a Secchi disk. Water samples (from 

0.5 m below the surface) were also obtained during 
zooplankton sampling. Water samples were analyzed 
to determine total phosphorus (TP, stannous chloride 
method, mg/L), nitrate nitrogen (NO 3 -N, nitrate 
selective method, mg/L), chemical oxygen demand 
(COD, open refl ux method, mg/L) (APHA, 1992), 
and total nitrogen (TN, potassium persulfate 
digestion and ultraviolet spectrophotometry method, 
mg/L), ammonia nitrogen (NH4  -N, Nessler’s reagent 
spectrophotometry method, mg/L) (Huang et al., 
1999).  

 2.3 Zooplankton sampling and analysis 

 Zooplankton was sampled at 31 sampling stations 
in Nansi Lake and 33 sampling stations in Hongze 
Lake covering the whole area for both lakes (Fig.1). 
Sampling was carried out seasonally (spring, summer, 
autumn and winter) in April, July, and October of 
2015, and January 2016. Sampling was carried out 
both qualitatively and quantitatively. Qualitative 
samples were collected using conical nets of 23-μm 
mesh for protozoa and rotifers (fi xed at 1% Lugol’s 
solution) and of 64-μm mesh for crustaceans (fi xed at 
4% formalin) by horizontally towing at the surface at 
approximately 0.5 m depth, at a speed of 1–1.5 m/s, 
for approximately 5 min. Zooplankton were identifi ed 
in the lab to the lowest possible taxonomic level, 
usually to species or genus (Chiang and Du, 1979; 
Shen and Song, 1979; Tai and Chen, 1979; Tai and 
Song, 1979; Shen, 1983; Shiel, 1995) at 10×, 40×, 
and 100× magnifi cations using an Olympus compound 
microscope.  

 Quantitative sampling was performed using a 5-L 
modifi ed Patalas water sampler. For quantitative 
samples of smaller organisms (e.g., protozoa and 
rotifers, nets of 23 μm mesh), 5 L of water was fi ltered 
and fi xed in 1% Lugol’s solution. For crustaceans 
(nets of 23-μm mesh), 20 L of water was fi ltered and 
preserved with 4% formalin. Zooplankton (rotifers, 
protozoans, cladocerans and copepods) samples were 
counted using Sedgewick-Rafter counting chambers. 
The enumeration of specimens in the samples was 
done using subsamples of 0.1 mL for protozoans and 
rotifers and 1 mL for crustaceans. Dominant species 
were calculated as those species occurring with more 
than 10% of the total individuals of a sample according 
to (Patalas, 1971). Habitat preference of zooplankton 
species was classifi ed as limnetic, littoral, or limnetic/
littoral (Tai and Chen, 1979; Shen, 1983; Smirnov 
and Timms, 1983; Koste and Tobias, 1987; Koste and 
Shiel, 1991).  
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 Fig.1 Map of the Nansi Lake (a) and Hongze Lake (b) 
showing the distribution of sampling stations  
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2.4  Statistical analysis 

 The datasets were checked with the Shapiro-Wilk 
test, and then, if necessary, square root (physico-
chemical environmental variables) or log ( x +1) 
(zooplankton density) transformed to achieve 
normality. To analyze diff erences between the lakes, a 
two-way analysis of variance (ANOVA) was 
performed for zooplankton density and a Friedman 
test was performed for physico-chemical parameters. 
All the above statistical analyses were conducted 
using SPSS, Version 20 (IBM Chicago, IL). Analyses 
were also conducted to calculate species richness, 
evenness and Shannon-Wiener diversity indices of 
zooplankton (rotifers, protozoans, cladocerans, and 
copepods) of the two lakes using software package 
Primer 5 (Clarke and Warwick, 2001).  

 Finally, to elucidate the relationship between the 
zooplankton composition and environmental conditions, 
a canonical correspondence analysis (CCA) was 
conducted for each lake (Ter Braak and Verdonschot, 

1995). Species abundances were square root-transformed 
and down-weighted for rare species, following the 
method of (Lepš and Šmilauer, 2003). The forward 
selection of CCA, which is analogous to stepwise 
multiple regression, was used to determine the 
signifi cance ( P <0.05) of environmental variables that 
could explain the variation in the species data. The 
signifi cance of these variables was assessed using 
Monte Carlo permutation tests (with 999 unrestricted 
permutations). All the ordinations were performed using 
CANOCO version 4.5 (Ter Braak and Smilauer, 2002) .

 3 RESULT 

 3.1 Zooplankton community structure and density  

 Total of 133 zooplankton species were identifi ed in 
Nansi Lake, and 122 were identifi ed in Hongze Lake. 
Zooplankton species (either limnetic or littoral) 
appeared in the category of sporadic (<10%) in both 
lakes (Table 1). Rotifers contributed as the major 
grouping for the total zooplankton diversity with a 

 Table 1 Zooplankton taxa recorded in Nansi Lake and Hongze Lake with frequency of occurrence (FO) (%) of species 

  

 Taxon  Species 
 Hongze Lake  Nansi Lake 

 FO  (%)  FO  (%)

 Rotifera       

  Rotaria  sp. (Scopoli)  Rot sp  8.11  8.11 

  Colurella   obtusa  (Gosse)  Cobt  2.7  3.6 

  Colurella   colurus  (Ehenberg)  Ccol  2.38  19.82 

  Lepadella   patella  (Müller)  Lpat  1.59  21.62 

  Lepadella   ovalis  (Müller)  Lova  –  1.8 

  Brachionus   angularis  (Gosse)  Bang  48.41  57.66 

  Brachionus   calycifl orus  (Pallas)  Bcal  63.49  80.18 

  Brachionus   urceolaris  (Hempel)  Burc  0.79  6.31 

  Brachionus   diversicornis  (Daday)  Bdiv  29.37  33.33 

  Brachionus   havanaensis  (Koste)  Bhav  2.7  2.5 

  Brachionus   forfi cula  (Wierzejski)  Bfor  24.32  24.32 

  Brachionus   budapestinensis  (Hempel)  Bbud  21.43  7.21 

  Brachionus   caudatus  (Stemberger)  Bcau  7.14  2.7 

  Brachionus   quadridentatus  (Hermann)  Bqua  30.63  30.63 

  Brachionus   rotundiformis  (Tschugunoff )  Brot  0.79  – 

  Brachionus   capsulifl orus  (Pallas)  Bcap  0.79  – 

  Brachionus   bennini  (Leißling)  Bben  7.14  – 

  Brachionus   falcatus  (Zacharias)  Bfal  4.76  – 

 Brachionus rubens (Ehenberg)  Brub  11.9  17.12 

  Keratella   quadrata  (Carlin)  Kqua  47.62  32.43 

 Taxon  Species 
 Hongze Lake  Nansi Lake 

 FO  (%)  FO  (%)

  Keratella   cochlearis  (Gosse)  Kcoc  67.46  61.26 

  Keratella   valga  (Ehenberg)  Kval  26.98  41.44 

  Keratella   tecta  (Gosse)  Ktec  34.92  54.05 

  Keratella   tropica  (Apstein)  Ktro  8.73  3.6 

  Trichotria   pocillum  (Müller)  Tpoc  3.17  4.5 

  Trichotria   tetractis  (Ehenberg)  Ttec  –  3.6 

  Notholca   labis  (Marukawa)  Nlab  8.73  18.02 

  Notholca   squamula  (Müller)  Nsqa  3.17  2,3 

  Mytilina   acanthophora  (Hauer)  Maca  1.3  3.6 

  Macrochaetus   subquadratus  (Perty)  Msub  1.4  1.8 

  Mytilina   ventralis  (Gosse)  Mven  –  8.11 

  Euchlanis   triquetra  (Gosse)  Etri  4.76  25.23 

  Euchlanis   dilatata  (Ehenberg)  Edil  27.03  9.52 

  Euchlanis   piriformis  (Gosse)  Epir  –  3.6 

  Anuraeopsis   fi ssa  (Gosse)  Afi ss  9.01  – 

  Epiphanes  sp. (Ehenberg)  Epi sp  7.21  – 

  Lecane   spenceri  (Shepard)  Lspe  0.79  0.9 

  Lecane   closterocerca  (Schmarda)  Lclo  7.14  24.32 

  Lecane   luna  (Müller)  Llun  5.56  15.32 

  Lecane   lunaris  (Ehenberg)  Lluns  7.14  28.83 

  Lecane   curvicornis  (Harring)  Lsti  –  0.79 

 FO: frequency of occurrence, >70%: much frequent; 70%–40%: frequent; 40%–10%: less frequent; <10%: infrequent/sporadic. –: no occurrence. 

To be continued
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 Table 1 Continued 

  

 Taxon  Species 
 Hongze Lake  Nansi Lake 

 FO  (%)  FO  (%)

  Lecane   ludwigii  (Eckstein)  Llud  –  0.9 

  Asplanchna   brightwelli  (Daday)  Abri  0.9  – 

  Cephalodella   tantilloides  (Hauer)  Ctan  –  0.9 

  Cephalodella   gibba  (Ehenberg)  Cgib  –  1.8 

  Monommata   longiseta  (Müller)  Mlon  –  0.79 

  Notommata  sp. (Ehenberg)  Notsp  1.59  4.5 

  Scaridium   longicaudum  (Müller)  Slon  0.79  1.8 

  Gastropus   hyptopus  (Lindner)  Ghyp  7.14  4.5 

  Ascomorphs  sp. (Perty)  Ascsp  –  0.9 

  Trichocerca   rattus  (Müller)  Trat  –  6.31 

  Trichocerca   weberi  (Edmondson)  Tweb  –  9.01 

  Trichocerca   gracilis  (Carlin)  Tgra  15.08  20.72 

  Trichocerca   bicristata  (Harring)  Tbic  7.14  16.22 

  Trichocerca   tenuior  (Gosse)  Tten  –  6.31 

  Trichocerca   elongata  (Gosse)  Telo  –  5.01 

  Trichocerca   rattus  (Muller)  Trat  –  6.87 

  Trichocerca   similis  (Wierzejski)  Tsim  36.94  – 

  Platyias   quadricornis  (Ehrenberg)  Pqua  –  5.67 

  Polyarthra  sp. (Ehrenberg)  Ptri  13.51  – 

  Polyarthra   major  (Burckhardt)  Pmaj  0.79  – 

  Polyarthra   remata  (Skorikov)  Prem  7.14  48.65 

  Polyarthra   vulgaris  (Carlin)  Pvul  53.97  – 

  Polyarthra   dolichoptera  (Idelson)  Pdol  42.06  37.84 

  Synchaeta   longipes  (Gosse)  Slon  12.7  8.11 

  Synchaeta   grandis  (Zacharias)  Sgran  8.11  8.11 

  Testudinella   mucronata  (Gosse)  Tmuc  –  5.41 

  Testudinella   patina  (Hermann)  Tpat  11.71  – 

  Hexarthra   fennica  (Levander)  Hfen  3.97  6.31 

  Hexarthra   mira  (Hudson)  Hmir  7.94  13.51 

  Filinia   cf   terminalis  (Plate)  Fter  10.32  15.32 

  Filinia   longiseta  (Ehrenberg)  Flon  48.41  46.85 

  Macrotrachela   plicata  (Bryce)  Mpli  –  9.91 

 Cladocera       

  Diaphanosoma   leuchtenbergianum  (Fischer)  Dleu  16.45  20.72 

  Diaphanosoma   sarsi  (Richard)  Dsar  2.15  2.7 

  Diaphanosoma   brachyurum  (Lievin)  Dbra  9.91  – 

  Diaphanosoma   excisum  (Sars)  Dex  6.31  – 

  Diaphanosoma   chankensis  (Ueno)  Dcha  0.72  0.9 

  Bosmina   coregoni  (Baird)  Bcor  19.31  24.32 

  Bosmina   longirostris  (Müller)  Blon  31.46  39.64 

  Daphnia   hyalina  (Leydig)  Dhya  17.46  – 

  Daphnia   cucullata  (Sars)  Dcuc  1.58  – 

 Taxon  Species 
 Hongze Lake  Nansi Lake 

 FO  (%)  FO  (%)

  Daphnia   cristata  (Sars)  Dcri  4.76  – 

  Simocephalus   vetulus  (Müller)  Svet  –  6.67 

  Ceriodaphnia   laticaudata  (Müller)  Clat  –  0.79 

  Ceriodaphnia   hamata  (Sars)  Cham  –  0.79 

  Ceriodaphnia   cornuta  (Sars)  Ccor  7.15  9.01 

  Moina   micrura  (Kurz)  Mmic  8.58  10.81 

  Moina   chankensis  (Ueno)  Mcha  6.34  – 

  Moina   macrocopa  (Straus)  Mmac  –  0.79 

  Moina   rectirostris  (Leydig)  Mrec  5.01  6.31 

  Moina   weismanni  (Ishikawa)  Mwei  0.72  0.9 

  Alona   guttata  (Sars)  Agut  5.72  7.21 

  Alona   diaphana  (King)  Adia  –  0.9 

  Alona   costata  (Sars)  Acos  1.78  24.32 

  Alona   affi  nis  (Leydig)  Aafi   –  3.6 

  Alona   rectangularis  (Sars)  Arec  –  5.41 

  Graptoleberis   testudinaria  (Fischer)  Gtes  –  10.81 

  Pleuroxus   hamulatus  (Birge)  Pham  1.43  1.8 

  Chydorus   barroisi  (Richard)  Cbar  24.31  30.63 

  Chydorus   sphaericus  (Müller)  Csp  13.78  – 

  Leydigia   acanthocercoides  (Fischer)  Laca  –  1.8 

  Ceriodahnia   pulchella  (Sars)  Cpul  –  1.76 

 Copepoda       

  Acanthocyclops   viridis  (Jurine)  Avir  –  13.51 

  Diacyclops   thomasi  (Forbes)  Dtho  1.43  11.71 

  Mesocyclops   leukartii  (Claus)  Mleu  14.3  18.02 

  Thermocyclops   taihokuensis  (Harada)  Ttai  2.15  2.7 

  Cyclops   vicinus  (Ulyanin)  Cvic  9.3  1.8 

  Microcyclops   varicans  (Sars)  Mvar  12.97  14.28 

  Eucyclops   serrulatus  (Fischer)  Eser  9.01  9.87 

  Paracyclops   fi mbriatus  (Fischer)  Pfi m  –  0.79 

  Schmackeria   poplesia  (Shen)  Spop  3.96  – 

  Schmackeria   forbesi  (Poppe&Richard)  Sfor  2.86  3.6 

  Sinocalanus   doerri  (Brehm)  Sdor  6.44  8.11 

  Sinocalanus   sinensis  (Poppe)  Ssin  1.58  5.4 

  Neodiaptomus   schmackeri  (Poppe&Richard)  Nsch  8.73  – 

  Schmackeria   inopinus  (Burckhardt)  Sino  –  0.9 

  Nitocrella  sp.(Chappuis)  Nit sp  2.12  3.6 

  Sinocalanus  sp. (Burckhardt)  Sin sp  2.38  – 

  Limnoithona  sp. (Burckhardt)  Lim sp  2.38  – 

  Nitokra   lacustris  (Schmankevitsch)  Nlac  –  1.78 

  Canthocamptus  sp. (Westwood)  Cam sp  3.17  3.96 
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frequency of occurrence of more than 50%. In contrast 
with diversity patterns of protozoa and Rotifera, 
crustacean zooplankton in the two lakes had low 
species diversity.   In Nansi Lake and Hongze Lake, 

rotifers and protozoans contributed more to the total 
zooplankton density ( P <0.05), (Fig.2). 

 3.2 Dominant species and diversity indices 

 In Nansi Lake, the most dominant species were 
 Keratella   tecta ,  Keratella   valga , and  Lecane   luna  for 
rotifera (Fig.3a). In Hongze lake, the most dominant 
species were limnetic, e.g.,  Brachionus   angularis , 
 Brachionus   forfi cula , and  Polyarthra   vulgaris  for 
rotifer (Fig.3b). Shannon-Wiener diversity index (5.13) 
was higher in Nansi Lake than in Hongze Lake (4.87), 
while the species richness index was higher (4.21) in 
Hongze Lake than in Nansi Lake (3.54) (Fig.4).  
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 3.3 Factors related to seasonal dynamics of 
zooplankton assemblages 

 Figure 5 shows seasonal variation of physico-
chemical factors between Nansi Lake and Hongze 
Lake. In Nansi Lake, CCA identifi ed that the 
environmental variables pH, total phosphorus and 

temperature contributed signifi cantly to zooplankton 
assemblages ( P <0.05) (Fig.6a, Table 2). CCA axis 1 
(λ: 0.08) and CCA axis 2 (λ: 0.05) explained 63.3% 
and 36.7% of the total variance of the species 
environmental relationship respectively. The 
correlation effi  ciencies of the fi rst two axes were 0.72 
and 0.57, respectively. The fi rst axis was highly 
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correlated with temperature and pH; the second axis 
was highly correlated to total phosphorus. The 
dominant species such as  Ceriodaphnia   cornuta , and 
 K .  tecta  were associated with higher temperature 
values, species such as  B .  forfi cula  were associated 
with high pH, and species such as  Arcella   vulgaris , 
 L .  luna , and  K .  valga  were associated with low pH. In 
addition, the dominant species  Moina   macrocopa  and 
 Diaphanosoma   leuchtenbergianum  were correlated 
with total phosphorus. 

 For Hongze Lake, CCA identifi ed the environmental 
variables NH 4- N, total nitrogen, transparency and pH 
as contributing signifi cantly to zooplankton 
assemblages ( P <0.05). CCA axis 1 (λ: 0.08) and CCA 
axis 2 (λ: 0.06) explained 58.2% and 41.8% of the total 
variance of the species environmental relationship 
respectively. The correlation effi  ciencies of the fi rst 
two axes were 0.79 and 0.68, respectively. The fi rst 
axis was highly correlated with NH 4 -N, total nitrogen 
and transparency; the second axis was highly correlated 
with pH. The dominant species such as  B .  angularis , 
 P .  vulgaris ,  Tintinnopsis   sinensis ,  Tintinnopsis   wangi , 
and  Moina   micrura  were associated with higher levels 
of NH 4 -N and total nitrogen, whereas species such 
 K .  tropica ,  C .  cornuta ,  Bosmina   coregoni , and 
 B .  longirostris  were associated with high transparency. 
In addition, the species  Anuraeopsis   fi ssa  and 

 Polyarthra   dolichoptera  were more strongly correlated 
with pH. However, in the ordination plot of 
environmental variables and community structure, 
few species were scattered near the origin, which 
represents average values for environmental variables 
for these species (Fig.6b; Table 2). 

 4 DISCUSSION 

 Water levels in Nansi and Hongze Lakes were 
strongly infl uenced by the operation of the East Route 
of the South-to-North Water Transfer project. The 
ESNT likely led to lower transparency, increased 
nutrients and more fl uctuations in water level, which 

 Table 2 Summary statistics for the fi rst two axes of CCA 
performed between environmental variables and 
zooplankton species for the Nansi Lake and 
Hongze Lake  

 Lake  Axes   λ   A  B  C  D 

 Nansi 
 1  0.08  0.72  7.4  63.3   

 2  0.05  0.57  11.6  36.7  0.18 

 Hongze 
 1  0.08  0.79  5.3  58.2   

 2  0.06  0.68  9.1  41.8  0.19 

  λ : eigenvalues; A: species-environment correlations; B: cumulative 
percentage variance of species data; C: cumulative percentage variance of 
species environment relation; D: sum of all canonical eigenvalues. 
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could have signifi cantly altered abiotic and biotic 
factors in the lakes. More than 50% of zooplankton 
species (either limnetic or littoral) appeared within 
the category of sporadic in lakes. Water level 
fl uctuations due to water exchange aff ected the 
zooplankton assemblage by the appearance or 
disappearance of certain taxa. Opportunistic peaks 
and declines of certain zooplankton taxa were likely 
correlated with the changing lake habitats and food 
resources aff ected by water transfer. Therefore, water 
level fl uctuations may infl uence extreme habitat 
alterations in these ecosystems (Balkić et al., 2018). 

 The comparative analysis of zooplankton 
community assemblages showed that a large degree 
of variation occurred concerning species composition, 
habitat preference, and density of zooplankton in 
Nansi Lake and Hongze Lake. Protozoans and 
Rotifera species diversity and abundance were a 
characteristic feature of the two lakes. The current 
study found 133 zooplankton species in Nansi Lake 
and 122 in Hongze Lake. When compared to previous 
studies, there were 249 species reported in the early 
1980’s in Nansi Lake, and then species richness 
drastically declined to 28 species in 2002 and 48 
species in 2008 (Gong et al., 2010). The zooplankton 
richness was gradually recovered with 163 species in 
2012 (Chen et al., 2016). Zooplankton species 
richness was again reported to have decreased during 
surveys from 2011–2015. A total of 58 species of 
zooplankton were observed in 2011, 62 in 2012, 67 in 
2013–2014 and 65 in 2015 (Meng et al., 2017). The 
data of the present study have shown a substantial 
decrease in the abundance of zooplankton 
communities in Nansi Lake. The contribution of 
pelagic species decreased, and the proportion of 
littoral species of zooplanktons increased. The 
decreased diversity of pelagic species is probably a 
consequence of the leaching action of fl owing water 
(Havel et al., 2000). A key factor infl uencing the 
occurrence of particular species in the littoral zone 
and, in consequence, the diversity of communities 
colonizing this zone, is the availability of diverse 
habitats (Balayla and Moss, 2003). Yang (2003) 
reported 91 species of zooplankton and an average 
abundance of 1 458 ind./L   in Hongze Lake. Du et al. 
(2014) reported 34 rotifer species comprised with the 
dominant species  Keratella   cochlearis ,  Asplanchna  
 priodonta ,  Polyarthra   dolichoptera ,  Brachionus  
 calycifl orus , and  Keratella   valga  were collected in 
2011. Among the total zooplankton species, most of 
the species were limnetic, and remaining taxa were 

either littoral or common in both habitats. Therefore, 
the qualitative structure of zooplankton of Hongze 
Lake was signifi cantly comprised of limnetic species. 
However, an increase in the percentage of pelagic 
rotifers in the total density of zooplankton was also 
observed in Hongze Lake. The greatest increase was 
noted in the limnetic species,  B .  angularis ,  B .  forfi cula , 
 P .  vulgaris , and  K .  cochlearis , although these taxa are 
ubiquitous in many waters and are most common in 
fl owing ecosystem (Ejsmont-Karabin and Kruk, 
1998; Kobayashi et al., 1998; Czerniawski and 
Domagała, 2010; Czerniawski and Pilecka-Rapacz, 
2011). This phenomenon is connected with the short 
generation cycle of this group and the possibility to 
satisfy the threshold food concentration in scanty 
river waters (Baranyi et al., 2002). However, the 
largest changes in habitat preference of the species, 
especially limnetic ones clearly indicate the eff ect of 
the water transfer on the lakes. Based on the 
morphology and habitat types of Hongze Lake, it may 
be subjected to more ecological eff ects of water 
transfer. Following ESNT, the downstream regions of 
Hongze Lake could be experiencing hydrological 
instability from high variability of water current in the 
lotic water transfer system. A second factor may be 
aff ecting the Rotifera richness in the pelagic zone, as 
a result of washout of aquatic macrophytes by the 
currents. Another factor could be that the ESNT 
connection between Hongze Lake and Changjiang 
River and nearby lakes through canals will allow 
recruitment of pelagic species to the lakes. Such 
plankton exchange could especially infl uence patterns 
of fl owing water species such as  K .  cochlearis . 

 Protozoans and rotifers were the most abundant 
zooplankton group in both lakes. More abundant 
populations of rotifer genera ( Lecane ,  Keratella  in 
Nansi Lake,  Brachionus  and  Polyarthra  in Hongze 
Lake) and protozoans ( Diffl  ugia  and  Arcella  in Nansi 
Lake and  Tintinnopsis  in Hongze Lake) were found 
during summer coinciding with lower water levels. 
Succession of the planktonic species, especially 
rotifers and protozoans, are determined by the 
environment with plentiful food resources of algae 
and detritus (Auer et al., 2004; Wallace et al., 2006; 
Sodré-Neto and Araújo, 2008). The dominant 
planktonic groups had opportunistic life history traits, 
with short life cycles and resilience to variation in the 
hydrologic regime. When compared to protozoans 
and rotifers, copepods and cladocerans tended to have 
low diversity and density in the studied lakes. The 
more abundant cladoceran genera ( Diaphanosoma , 
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 Moina , and  Ceriodaphnia  in Nansi Lake;  Moina  in 
Hongze Lake) were developed during the summer-
autumn seasons at lower water levels. The large-
bodied cladoceran  Daphnia  was also found absent in 
Nansi Lake. In lower water levels, nutrient 
concentrations may be high, and a strong prevalence 
of few species preferring higher biogen concentrations, 
combined with a decrease in chemical components, 
may have caused an eradication of more sensitive 
taxa (Sampaio and López, 2000). In lakes, fi sh 
predation on large crustaceans may lead to a shift 
towards smaller crustaceans and rotifers (Brooks and 
Dodson, 1965; Korponai et al., 1997). The dominant 
copepod genera ( Diacyclops  and  Microcyclops  in 
Nansi Lake;  Mesocyclops  and  Sinocalanus  in Hongze 
Lake) occurred during spring and summer seasons, 
respectively. Higher temperatures during warmer 
months accelerate the growth of phytoplankton 
productivity that exceeded the growth of certain 
species. Dominance of cyclops and sinocalanus might 
be infl uenced by the availability of food resources in 
particular seasons (Simões et al., 2013). 

 Zooplankton community structure and their 
seasonal dynamics in the lacustrine environment are 
driven by a variety of factors such as lake morphology, 
hydrological properties, climate conditions, and 
anthropogenic activities (Fryer, 1985). CCA analysis 
identifi ed diff ering signifi cant environment variables 
that explained maximum variability in zooplankton 
community structure in the two lakes. These results 
confi rm numerous former studies and show that 
abiotic factors such as pH, nutrients (N and P), 
temperature, and turbidity concentrations are major 
driving forces that infl uence directly or indirectly the 
zooplankton assemblage (Bērzinš and Pejler, 1989; 
Pinel-Alloul et al., 1990; Dodson, 1992; Jeppesen et 
al., 1994; Derry et al., 2003). Temperature signifi cantly 
explained zooplankton variation in Nansi Lake, with 
 P .  dolichoptera ,  Filinia   terminalis , and  K .  tecta  being 
associated with increasing temperature. Rotifers 
generally have an extensive tolerance to temperature, 
but in separate lakes, they are restricted with 
temperature diff erences (Bērzinš and Pejler 1989). In 
the present study,  F .  terminalis  and  P .  dolichoptera  
were associated with high temperature, but these 
species usually are considered to be “winter species”, 
preferring temperatures below 10 °C (Carlin, 1943; 
Galkovskaya et al., 2006). However, other former 
studies also observed the occurrence of these species 
at higher temperatures in small lakes and ponds 
(Bērzinš and Pejler, 1989). Higher temperatures can 

theoretically promote comparable benefi ts for small 
zooplankton species exhibiting strategy life history 
traits and growth patterns (May, 1983; Hessen et al., 
1995; Bunioto and Arcifa, 2007).  B .  calycifl orus  was 
found to favor low temperatures in this study, but not 
in other studies (Bērzinš and Pejler, 1989; Xiang et 
al., 2010; Ji et al., 2013),  K .  quadrata  preferred low 
temperatures in our study as well as in other studies 
(May, 1983; Galkovskaya et al., 2006; Wen et al., 
2011). These diff ering results could be explained in 
that temperature alone does not generally determine 
when and where a species occurs, as there is a 
combination of other biotic and abiotic factors that 
contribute along with temperature (Bērzinš and Pejler, 
1989). In addition,  Daphnia   hyalina , and  Cyclops  
 vicinus  peaked at low temperatures, while other 
species such as  Thermocyclops   taihokuensis  and 
 Ceriodaphnia   cornuta  peaked at relatively high 
temperatures. Early spring species  Cyclops   vicinus  
and  Daphnia   hyalina  normally prefer temperatures 
below 25 °C, attaining a higher growth rate and 
development at this temperature (Chiang and Du, 
1979; Maier, 1989). Seasonal changes in temperature 
likely attributed to the changes in species composition 
and density of species (Tackx et al., 2004). Hongze 
Lake dominant species  C .  cornuta ,  Bosmina   coregoni  
and  Bosmina   longirostris  and  Keratella   tropica  were 
associated with lower transparency, which may 
provide better shelter for this zooplankton than in 
clear water (Dodson, 1990; Wissel and Ramacharan, 
2003). In Hongze Lake, dominant species  T .  wangi , 
 T .  sinensis ,  K .  cochlearis ,  B .  angularis , and  P .  vulgaris  
were correlated to NH 4 -N and total nitrogen, while in 
Nansi Lake  Diffl  ugia   gramen ,  Centropyxis  
 orbicularis ,  B .  calycifl orus , and  Keratella   tropica  
were correlated to total phosphorus. Nutrients 
including NH 4 -N, NO 3 -N, total nitrogen, and total 
phosphorus can indirectly aff ect protozoans and 
rotifers via trophic cascades. Rotifers are unselective 
micro fi ltrates, feeding on particles in the range of 
0.5 to 20 μm with a diff erential ability to feed on 
bacteria, protozoans, heterotrophic fl agellates, and 
numerous algae, including pico- and nano- 
phytoplankton (Arndt, 1993). In Nansi Lake, 
dominant species such as  Moina   macrocopa , 
 Diaphanosoma   leuchtenbergianum , and the copepods 
 Sinocalanus   doerri  and  Schmackeria   forbesi  were 
associated with total phosphorus concentration. Total 
phosphorus infl uences the growth of crustaceans by 
refl ecting edible food materials for them. Cladocerans 
share available food with rotifers, and the majority of 
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cladocerans are fi lter feeders (Gilbert, 1966; Yan, 
1986; Pinto-Coelho et al., 2005).  

 5 CONCLUSION 

 Our study demonstrated that the diff erences in the 
zooplankton assemblages are likely due to water level 
fl uctuations caused by water transfer, and some 
environmental conditions are likely responsible for 
biotic changes and ecosystem functioning in the 
studied freshwater lakes. Water exchange signifi cantly 
aff ected the lake morphology due to water level 
fl uctuations being responsible for the habitat 
preference of the zooplankton community structure in 
studied lakes. The stated decrease in taxonomic 
diversity of crustacean plankton fauna and the 
prevalence of specifi c zooplankton taxa, likely 
correlated with the change of lake habitats and food 
resources in the studied lakes. Further studies are 
needed to predict the infl uence of the ESNT on the 
hydrological and biotic community (phytoplankton, 
zooplankton, and fi shes) in Nansi and Hongze Lakes. 
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