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  Abstract        There is an urgent need to develop effi  cient evaluation tools that use easily measured variables 
to make rapid and timely eutrophication assessments, which are important for marine health management, 
and to implement eutrophication monitoring programs. In this study, an approach for rapidly assessing the 
eutrophication status of coastal waters with three easily measured parameters (turbidity, chlorophyll a and 
dissolved oxygen) was developed by the grid search (GS) optimized support vector machine (SVM), with 
trophic index TRIX classifi cation results as the reference. With the optimized penalty parameter  C =64 and 
the kernel parameter  γ =1, the classifi cation accuracy rates reached 89.3% for the training data, 88.3% for 
the cross-validation, and 88.5% for the validation dataset. Because the developed approach only used three 
easy-to-measure variables, its application could facilitate the rapid assessment of the eutrophication status 
of coastal waters, resulting in potential cost savings in marine monitoring programs and assisting in the 
provision of timely advice for marine management. 
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 1 INTRODUCTION 

 Eutrophication is defi ned as “the enrichment of 
water by nutrients, especially compounds of nitrogen 
(N) and/or phosphorus (P) causing an accelerated 
growth of algae and higher forms of plant life to 
produce an undesirable disturbance to the balance of 
organisms present in the water and to the quality of 
the water concerned” (Ferreira et al., 2010). It often 
brings about the reduction in light transparency, 
depletion of dissolved oxygen, the growth of toxic 
algal blooms and a loss of biodiversity (Hartnett and 
Nash, 2004; Takaara et al., 2010; Carraro et al., 2012; 
Rabalais et al., 2014; Tekile et al., 2015; Stefani et al., 
2016). In recent decades, it has an increasing tendency 
toward the eutrophication phenomenon in the coastal 
and off shore areas due to the stress exerted on the 
marine environment by terrestrial sources, including 
industrial activities, agriculture production, transport, 
energy production, fi shing and tourism (Crossland et 
al., 2005). Eutrophication has aroused a major concern 
in marine environment protection worldwide due to 

the serious threats on the aquatic ecosystem and 
public health (Xue and Landis, 2010; Howarth et al., 
2011). Therefore, evaluation of eutrophication is 
indispensable for regular marine health management 
and implementation of eutrophication monitoring 
PROGRAMS that help to understand the variations in 
marine water quality. 

 However, some procedures of data collection and 
analysis for the assessment of eutrophication, such as 
nutrients, BOD and COD, are usually be determined 
in a laboratory and usually time-consuming, costly 
and strenuous, which may not suffi  ciently facilitate 
real-time and on-line evaluation and monitoring of 
the eutrophication of coastal and off shore areas. In 
fact, the multidimensional property of marine 
eutrophication means that no single variable can 
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represent the eutrophication status (Cabrita et al., 
2015). Although a wide range of physical, chemical, 
and biological variables contributes to the 
understanding of coastal marine eutrophication 
processes, some parameters are highly correlated, 
undoubtedly, are not all necessary for the development 
of the eutrophication assessment method (Ignatiades 
et al., 1985; Primpas and Karydis, 2010). Therefore, 
the application of several easily measured water 
quality parameters might have the same eff ect on 
assessment of trophic status, and would also facilitate 
the rapid assessment of eutrophication and implement 
the real-time monitoring of eutrophication. Chl- a  is 
often considered to be an important and responsive 
variable that is closely related to water eutrophication 
(Gibson et al., 2000; Bricker et al., 2008; Fu et al., 
2016). Dissolved oxygen is an essential environmental 
condition for the production of biodegradable organic 
matter and algal growth and has a signifi cant infl uence 
on eutrophication (Rixen et al., 2010; Li et al., 2015; 
Yan et al., 2016). Turbidity, the cumulative result of 
total suspended matter and phytoplankton in water 
environment, is another variable that is strongly 
related to eutrophication (France and Peters, 1995; 
Song et al., 2012; Jones et al., 2015). These three 
variables, easily measured in the fi eld by a multi-
parameter water quality probe, are most often used 
for characterizing eutrophication. Many opinions 
have been stated in the previous studies concerning 
the use of biological or physicochemical variables for 
eutrophication assessment. For example, Fernándeza 
et al. (2014) modeled eutrophication and risk 
prevention in a reservoir in the Northwest of Spain 
from biological and physico-chemical parameters 
(turbidity, DO, temperature, TN, TP, Chlorococcales, 
and so on) by using multivariate adaptive regression 
spline analysis. Kuo et al. (2007) used an artifi cial 
neural network to relate the key factors that infl uence 
a number of water quality indicators, such as DO, 
Chl- a , TP, and the secchi disk depth, for reservoir 
eutrophication prediction in a reservoir in central 
Taiwan.  

 Currently, multivariate statistical methods are 
regarded as powerful tools to evaluate eutrophication 
status because they can combine eutrophic impacts 
with diff erent aspects of the marine environment. For 
example, principal component analysis (PCA) has 
been used to determine the major variables that aff ect 
eutrophication processes (Lundberg et al., 2009; 
Primpas and Karydis, 2010); cluster analysis (CA) 
has been used to classify diff erent variations into the 

proper eutrophication status (Stefanou et al., 2000; 
Primpas et al., 2008); discriminant factor analysis 
(DFA) has been used to identify variables that can 
diff erentiate sampling sites and to group them 
according to their eutrophication conditions (Tsirtsis 
and Karydis, 1999; Pinto et al., 2012); and the artifi cial 
neural network (ANN) mode has been used in 
eutrophication assessment due to its simplicity and 
relatively good fi tting output (Jiang et al., 2006; Kuo 
et al., 2007). 

 Support vector machine (SVM) has been considered 
as one most promising approach for evaluating the 
multidimensional property of marine eutrophication 
by refl ecting the nonlinearity between responsive 
indicator and environmental factors using structural 
risk minimization principle and possessing the well-
known ability of being universal approximators of 
any multivariate function to any desired degree of 
accuracy (Liu et al., 2016b). In particular, SVM 
maintains steady performance regardless of input 
dimensionality and correctly determines the global 
optimum during the classifi cation process and can 
avoid overfi tting output with better generalization 
performance (Gokcen and Peng, 2002; Liu and Zhou, 
2015). SVM based on machine learning theory is a 
powerful data classifi cation method that has been 
applied in predicting values from a wide variety of 
environmental fi elds: identifi cation of phytoplankton 
(Ribeiro and Torgo, 2008), forecast of turbidity 
(García Nieto et al., 2014), study of water properties 
(Vilán Vilán et al., 2013), prediction of chlorophyll a 
concentration (Park et al., 2015), analysis of water 
level fl uctuations (Kisi et al., 2015), and so on. The 
grid search (GS) algorithm is simple and 
straightforward to determine the optimize parameter 
values for the SVM approach classifi er (Gao and Hou, 
2016). The grid search (GS) algorithm uses grid 
computing for search processes that provides grid 
services and information to obtain best interoperability 
(Bashir et al., 2016). It outperforms both in terms of 
classifi cation accuracy and computation effi  ciency. 
Particularly, when the optimized parameters are many 
or with great ranges, the grid search (GS) is 
recommended (Sajan et al., 2015). The eff ect of the 
input variables on the degree of eutrophication was 
assessed by path analysis, which involves standard, 
multiple, and linear regression techniques to estimate 
path coeffi  cients and distinguishes causation and 
interrelation between variables into both direct and 
indirect eff ects (Li, 1975; Chesterton et al., 1989). 
Thus, this study aims to develop a rapid and low-cost 



251No.2 KONG et al.: Rapid assessment of eutrophication status

method for evaluating the eutrophication status of 
coastal and off shore waters in the Yellow Sea and East 
China Sea by SVM in combination with the GS 
approach, utilizing three easy-to-measure parameters 
(turbidity, chlorophyll a and dissolved oxygen).  

 2 MATERIAL AND METHOD 

 2.1 The study area 

 As shown in Fig.1, a total of 132 sampling sites 
were chosen in the Yellow Sea and the East China 
Sea. 294 water samples were collected from 64 
sampling sites in July 2013, 132 water samples were 
collected from 32 sampling sites in November 2013, 
and 191 water samples were collected from 36 
sampling sites in June 2014. 

 The study area (25°50′14.4″S, 120°56′30.012″E to 
39°24′49.572″S, 126°51′0.36″E) is a combination of 
two major marginal seas in the northwest Pacifi c 
Ocean, the Yellow Sea (YS) and the East China Sea 
(ECS). They are topographically connected, but 
divided subjectively by a line from the mouth of the 
Changjiang (Yangtze) River to the Cheju Island. The 
YS, representing a typical shallow marginal sea, is 
situated between the Korean Peninsula and the 
mainland China. The ECS, one of the largest marginal 
seas in the world, is bounded on the west by mainland 
China and on the east by Kuroshio (Ning et al., 2011). 
This area is mainly aff ected by a large range of current 
systems including the Changjiang Dilute Water, the 
YS Warm Current, the YS Cold Water Mass, the 
China Coastal Currents, the Taiwan Warm Current 
and the Kuroshio Current (Yuan et al., 2008; Yang et 
al., 2015). The Changjiang River is one of the largest 
rivers in the world and supplies a large freshwater 
discharge for adjacent sea regions which obviously 
changes from the diff erent seasons (Zheng et al., 
2015; Pang et al., 2016). Changjiang Diluted Water is 
divided into two branches when it outfl ows from the 
estuary region: one branch spreads to east of the 
Cheju Island and the other one extends southward 
along the seashore of Zhejiang Province (Zhu et al., 
2011; Sun et al., 2015). The YS and ECS are highly 
biologically active areas with complicated 
hydrological variations and are strongly infl uenced by 
land-ocean interactions (Shi and Wang, 2012). In 
recent decades, as a result of high population densities, 
discharge of domestic and industrial waste, and 
extensive use of chemical fertilizers, the Changjiang 
River estuary and adjacent coastal waters have 
received a high amount of terrestrial nutrients input, 

consequently, eutrophication has become increasingly 
serious in these regions (Yuan et al., 2008; Gao et al., 
2010; Chen et al., 2016).  

 2.2 Data collection and analysis 

 The dataset used was from 595 samples collected 
in the Yellow Sea and the East China Sea at standard 
depths, i.e., at the surface; at 10, 20, and 30 m below 
the surface; and at the bottom, which was determined 
by the depth of the water. The turbidity and DO 
concentrations were measured by a CTD multi-
parameter probe calibrated before the survey. Water 
samples for the determination of the Chl- a , TN, and 
TP concentrations were all collected using Niskin 
bottles mounted on a Seabird CTD Rosette. Water 
samples for the determination of the TN and TP 
concentrations were stored in 150-mL acid-cleaned 
plastic bottles at 4°C in the fi eld until transport to the 
laboratory. Samples (500 mL–2 L) for determining 
Chl- a  were fi ltered through 25-mm glass fi ber fi lters 
(Whatman GF/F, 0.7-μm pore size) under low vacuum 
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(<0.3 kPa) and dim light to prevent the degradation of 
pigments. Measurements of the concentrations of 
Chl- a , TN, and TP were conducted in the laboratory 
and fi nished within two weeks after the cruise. Prior 
to analysis, all samples were initially warmed to room 
temperature, after which TN and TP were determined 
using unfi ltered aliquots of samples according to the 
Valderrama method (Koroleff , 1983a, b). Chl- a  was 
extracted from the fi lters with 10 mL of acetone (90%) 
and kept in the dark for 2 h at 4°C. The fi lter debris 
was shaped into pellets using a hand-cranked 
centrifuge, after which the absorbance of the 
supernatant was measured using a Shimadzu 2550 
UV-Vis spectrophotometer calibrated using a blank 
solution of 90% acetone. The Chl- a  concentrations 
were calculated using the equations of Jeff rey and 
Humphrey (1975).  

 2.3 Trophic index (TRIX) 

 The multimetric trophic index TRIX, based on 
several biological, chemical, and physical parameters, 
off ers a suitable and acceptable method for evaluating 
coastal eutrophication. It was chosen as an assessment 
reference for coastal eutrophication in this research. 
The following formula was used to calculate the 
coastal eutrophication levels (Vollenweider et al., 
1998):  

 TRIX=[log 10 (Chl- a   aD%O  TN  TP)+ k ]/ m ,         (1) 
 where Chl- a =chlorophyll  a  concentration in μg/L, 
aD%O=oxygen as an absolute percentage deviation 
from saturation, TN=total nitrogen in μg/L, TP=total 
phosphorus in μg/L. The parameters  k =1.5 and  m =1.2 
were ratio coeffi  cients that were selected to defi ne the 
lower bound value of the trophic index TRIX. The 
physical signifi cances of the values are presented in 
Table 1 (Penna et al., 2004). 

 The trophic status index (TRIX) is a linear 
combination of the logarithms of four variables, 
allowing the key indicators to be synthesized into a 
simple numeric expression to make information 
available over a large array of spatial and temporal 
trophic status. It aggregates the main cause-eff ect 

variables of eutrophication including pressure 
response, biological response, and environmental 
disturbance (Pettine et al., 2007; Primpas and Karydis, 
2011) and provides useful metrics for the assessment 
of the trophic status of coastal waters (Cabrita et al., 
2015). TRIX has been used for assessing eutrophication 
in the Black Sea (Moncheva et al., 2002; Parkhomenko 
et al., 2003), the Caspian Sea (Nasrollahzadeh et al., 
2008; Shahrban and Etemad-Shahidi, 2010), the 
Adriatic sea (Vollenweider et al., 1998; Giovanardi 
and Vollenweider, 2004; Lušić et al., 2008; Mozetič et 
al., 2008), and the Baltic Sea (Pettine et al., 2007; 
Primpas and Karydis, 2011). Only 10 samples were 
evaluated in this study, which scaled as follows: 
2<TRIX<4. Thus, the ‘high’ and ‘good’ status of the 
original TRIX was redefi ned as a ‘good’ status, and the 
samples of the dataset were then re- a ssigned a 
categorical class label based on the TRIX values: 
2<TRIX<5=good (class 1), 5≤TRIX<6=moderate 
(class 2) and 6≤TRIX<8=poor (class 3).  

 2.4 Statistical analyses 

 In this study, statistical analyses (standard 
deviations, coeffi  cients of variation, correlation 
analyses, normal analyses (kurtosis and skewness 
analyses)) were performed with SPSS 16.0 software. 
Correlation analyses were used to examine the 
relationships between the variables. The correlation 
matrices of all variables are based on the Pearson 
correlation coeffi  cient, and the signifi cance levels 
were 0.01 (**) and 0.05 (*). Variables in most 
statistical approaches are required to conform to a 
normal distribution; thus, the distribution of each 
variable was examined by analyzing kurtosis and 
skewness before support vector machine analyses 
(Lattin et al., 2003; Papatheodorou et al., 2006).  

 2.5 Theoretical background for the SVM method 

 SVM is a powerful new machine learn tool for 
classifi cation and regression (Taboada et al., 2007; 
García Nieto et al., 2015). A SVM provides a nonlinear 
estimation by mapping the input data into a higher-

 Table 1 General ranking for the TRIX index and assigned class for this study 

 TRIX value  Conditions  Status  Reorganization of the trophic 
status for this study 

 Class label for 
this study 

 2–4  Water poorly productive-Low trophic level  High 
 Good  1 

 4–5  Water moderately productive-Mean trophic level  Good 

 5–6  Water moderate to highly productive-High trophic level  Moderate  Moderate  2 

 6–8  Water highly productive-Greatest trophic level  Poor  Poor  3 
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dimensional feature space. It uses a set of original 
data, called support vectors, to establish the optimal 
hyperplane (HosseinAbadi et al., 2014). The basic 
idea of SVM can be summarized as follows: 

 The given training sample is  S ={( x  i ,  y  i ),  i =1, ∙∙∙,  n }, 
where  x  i  indicates the input vector,  y  i  represents the 
corresponding desired output vector,  n  is the number 
of the training samples. A separating hyperplane, 
which follows, is constructed in the feature space: 

  f ( x )=sgn[( ω ) T  φ ( x )+ b ],                   (2) 
 where  ω  is the weight parameter that adjusts the 
construction of the feature hyperplane;  φ (•) represents 
the input data that are mapped into the high-
dimensional feature space; b is a bias that controls the 
threshold of margins between the support vectors and 
the optimized hyperplane. SVM solves the 
classifi cation problem by fi nding a hyperplane 
( ω ) T  φ ( x )+ b =0 (Liu et al., 2016b; Shen et al., 2016). 

 To map the input data into the N-dimensional 
space, SVM uses a kernel function. A kernel function 
allows non-linear data processing via a linear 
algorithm in the SVM model. Due to the radial basis 
kernel function (RBF) with simple modality, good 
smoothness, high learning ability, and easy analyticity, 
RBF are widely applied to classify data with various 

samples or dimensions (Liu and Zhou, 2015). Thus, 
RBF was proposed for as an ideal classifi cation kernel 
function to construct the SVM model in this study. In 
the construction of the SVM model, the training 
dataset was randomly divided into  n  equal subsets. 
One subset was employed once as a validation dataset, 
whereas the other  n –1 subsets were grouped into a 
new training dataset. Cross-validation was the 
standard technique to fi nd the actual accuracy rates 
for the analyzed data (Picard and Cook, 1984). The 
average accuracy of the  n  validation datasets was 
regarded as an estimator for the accuracy of the 
method. In consequence, the combination of optimize 
parameters with the best performance was chosen 
(García Nieto et al., 2016). Meanwhile, the grid 
search (GS) technique was employed to obtain the 
optimal penalty parameter ( C ) and kernel function 
parameter ( γ ). These must be selected accurately 
because they determine the structure of the high-
dimensional feature space and the complexity of the 
fi nal solution (Park et al., 2015; Sajan et al., 2015).  

 In this study, a SVM with RBF functions and the 
GS approach were employed to develop the 
assessment model for the eutrophication of coastal 
waters. Figure 2 shows the technical fl owchart of the 
SVM model development. The TRIX classifi cation 
results were used as target variables, while three 
variables, turbidity, Chl- a  and DO, were used as input 
variables. The 595 samples were randomly divided 
into two datasets, i.e., 300 samples in the training 
dataset and 295 samples in the validation dataset. 

 3 RESULT AND DISCUSSION 
 3.1 Descriptive statistical analyses 

 The descriptive statistics for the data are shown in 
Table 2. The coeffi  cients of variation (C.V.) for Chl- a  
and DO were both 0.9 and that for turbidity was 1.4. 

 Table 2 Descriptive statistics of the data collected in the 
Yellow Sea and East China Sea 

   Turbidity 
(NTU) 

 Chl- a  
(μg/L)  DO  TP 

(μg/L) 
 TN 

(μg/L)  TRIX 

 n a   595  595  595  595  595  595 

 Min b   0.01  0.1  0.0  4.8  39.6  2.7 

 Max b   10.0  32.6  77.2  196.6  833.5  7.3 

 Mean  1.5  3.4  19.7  18.6  282.5  5.5 

 Std. deviation  2.1  3.2  17.2  12.4  100.8  0.7 

 CV b   1.4  0.9   0.9   0.7  0.4  - 

  a  n indicates the number of samples collected;  b  Min, Max and CV represent 
minimum, maximum values and coeffi  cient of variation respectively. 

Optimization Verification 

TRIX classification results: 1, 2, 3 

Input variables: DO, Chl-a, turbidity

Experiment sample data (595)

Training dataset (300) Validation dataset (295)

Training GS-RBF-SVM model 

with 10-fold cross validation model 

for parameter selection C, γ 

A trained SVM classification model

Validating by SVM classification

Output the results 

 Fig.2 Flowchart of the SVM optimization procedure 
 All the SVM algorithms were performed with Matlab 2012.  
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The higher C.V. for turbidity may be because the 
studied area covered off shore stations with lower 
turbidity.  

 Kurtosis and skewness analyses demonstrated that 
DO, turbidity, and Chl- a  were almost positively 
skewed. However, after log transformation of these 
parameters, all skewness and kurtosis values were 
signifi cantly reduced, with ranges -1.315–0.202 and 
-0.012–3.600, respectively. Therefore, all of the 
aforementioned variables were log transformed prior 
to SVM analysis. 

 3.2 Eutrophication status of the Yellow Sea and the 
East China Sea 

 Table 3 shows the mean, standard error, and ranges 
of turbidity, Chl- a , DO, TP, and TN of the YS and the 
ECS.   The samples from summer and autumn in the 
Yellow Sea and the East China Sea show obviously 
diff erent characteristics of the eutrophication status. 
TP and TN showed wider ranges in summer than in 
autumn, suggesting that the larger freshwater input 
and higher primary production led to a greater trophic 
status variation in summer (http://www.cjw.gov.cn; 
Yamaguchi et al., 2013). Large amounts of freshwater 
discharge from the Changjiang River supply an 
abundance of nutrients to the Yellow Sea and East 
China Seas during the summer and intermediate 
levels of freshwater discharge occur in autumn (Zhu 
et al., 2009; Yamaguchi et al., 2013; Liu et al., 2016a). 
The DO values showed an apparent seasonal variation, 

with higher average values occurring in autumn 
(7.2±0.10 mg/L) and lower average DO values 
(5.9±0.07 mg/L) in summer (Table 3). The average 
DO concentration in autumn was higher than in 
summer, which was possibly due to the strong vertical 
eddy mixing in autumn (Wei et al., 2010; Li et al., 
2015). Turbidity varied within the range 0.01–9.6 
NTU in summer and 0.4–10.0 NTU in autumn 
(Table 3). Higher concentrations of suspended 
particulate matter might be due to the resuspension of 
seabed sediments as a result of the vigorous water 
mixing that occurred during autumn (Liu et al., 
2016a). The average Chl- a  concentration in summer 
was higher than in autumn because of high primary 
production and low SPM concentration (Gong et al., 
2003). 

 Figure 3 shows the spatial distributions of TP, TN, 
and TRIX in the surface layer in the Yellow Sea and 
the East China Sea. The highest values of TP, TN, 
and TRIX index were observed around the 
Changjiang estuary. This region was characterized 
by low salinity and relatively high nutrient 
concentrations. The highest values of the TN, TP 
and TRIX index in this region might be attributed to 
freshwater discharges from the Changjiang River, 
because there are over 13 tributaries fl owing into the 
Changjiang River. Base on the topographic feature 
of the Chongming Island, the Changjiang estuary is 
mainly separated into the North Branch and the 
South Branch. The North Branch receives 
approximately 5% of the estuarine inputs, whereas 
the South Branch covers the most fl ow of the estuary 
and accounts for more than 95% of the estuarine 
runoff  (Li et al., 2012). The Northern Yellow Sea 
(NYS) and nearshore area also had higher TP, TN, 
and TRIX values (Fig.3a–c) indicating the eff ects of 
Bohai Sea and coastal terrestrial inputs from the 
Yellow Sea Coastal Current and the East China Sea 
Coastal Current. There is a large amount of water 
fl owing into the NYS from Bohai Sea. Bohai Sea is 
a semi-enclosed inland sea of China that receives 
plenty of sediment supply and freshwater discharge 
from surrounding rivers (Liu, 2015). Infl uenced by 
terrigenous inputs, Bohai Sea receives plenty of 
nutrients (Song et al., 2016). The agricultural runoff , 
industrial pollution and domestic sewage from the 
coastal provinces are often transported to the Yellow 
Sea Coastal Current and the East China Sea Coastal 
Current by local rivers (Gao et al., 2010; Zhang et 
al., 2010). Anthropogenic sources could increase the 
trophic status of the nearshore area.  

 Table 3 Minimum, maximum and, mean (±standard error) 
of turbidity, Chl-a, DO ,  TP, TN and TRIX in 
summer and autumn 

 Region period  Summer  Autumn 

 Number of samples  463  132 

 Turbidity (NTU) 
 0.01–9.6  0.4–10.0 

 1.1±0.08  2.7±0.23 

 Chl- a  (μg/L) 
 0.1–32.6  1.1–7.7 

 3.4±0.16  3.3±0.11 

 DO (mg/L) 
 1.7–11.7  2.4–8.6 

 5.9±0.07  7.2±0.10 

 TP (μg/L) 
 4.8–196.6  5.1–41.2 

 18.4±0.62  19.5±0.73 

 TN (μg/L) 
 39.6–833.5  151.9–774.9 

 275.3±4.70  308.0±8.34 

 TRIX 
 2.7–7.3  3.4–6.7 

 5.5±0.03  5.5±0.05 



255No.2 KONG et al.: Rapid assessment of eutrophication status

 3.3 Correlation analyses 

 The association between variables was studied by 
correlation analysis. The DO was signifi cantly 
correlated with TP ( R =0.274,  P <0.01), TN ( R =0.380, 
 P <0.01), and turbidity ( R =0.349,  P <0.01). DO, the 
main factor infl uencing the nutrient cycle and the 
release of sediments into the overlying water under 
certain environmental conditions, has been 
investigated in many previous studies (Kim et al., 
2004; Zhang et al., 2014). Chl- a  showed positive 
correlations with TN ( R =0.251,  P <0.01) and TP ( R = 
0.212,  P <0.01). Nitrogen (N) and phosphorus (P) 

commonly determine the growth of algae. Excessive 
nutrients and energy resources often result in nuisance 
algal blooms (Busse et al., 2006; Liu et al., 2010). 
Recent studies indicate that Chl- a  could be used to 
predict TN and TP in estuaries and nearshore coastal 
waters (Meeuwig et al., 2000; Hoyer et al., 2002). 
Chl- a  also exhibited a signifi cant relationship with 
turbidity ( R =0.156,  P <0.01). The growth of biomass 
in eutrophic status contributes to turbidity, whereas 
high turbidity might reduce light penetration which 
impairs the photosynthesis of aquatic algae and 
vegetation and then aff ects the eutrophication process 
(Nicholls et al., 2003). Table 4 shows that turbidity 
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 Fig.3 Distributions of TP, TN, and TRIX in the surface layer in November 2013 (a, b, c) and in July 2013 (d, e, f) in the 
Yellow Sea and East China Sea 
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was signifi cantly correlated with TP and TN. Total 
suspended matter (TSM) usually acts as a carrier for 
nutrient loading (France and Peters, 1995; Viviano et 
al., 2014). A few studies have been performed to 
assess the interrelations among the various parameters 
related to eutrophication. Xu et al. (2015) developed 
Support Vector Regression model for the prediction 
of the TN, TP and Chl- a  concentrations aff ecting 
Chaohu lake eutrophication using six environment 
parameters (DO, temperature, pH, fl ow velocity, 
disturbance, and experiment time), and their results 
demonstrated that high correlation coeffi  cients for 
Chl- a , TN and TP (0.993, 0.996 and 0.976, 
respectively) have be obtained from the proposed 
model. Hur and Cho (2012) developed a real-time 
monitoring tool for the prediction of the BOD, COD, 
and TN concentrations in a typical urban river using 
PARAFAC-EEM and UV-Vis absorption indices and 
demonstrated an enhancement in the estimation 
capability, with Spearman’s rho values of 0.948, 
0.977, and 0.984, respectively. Because there were 
important correlations between the input variables 
and the nutrients TP and TN, and the output variable 
TRIX, comprehensive assessments of marine 
eutrophication levels should consider all of the three 
input variables. 

 Pearson correlation coeffi  cients only represent the 
linear correlation between two variables and may fail 
to defi ne the complex nature of an ecosystem. A new 
algorithm must be further explored to refl ect the 
nonlinearity between the responsive variable and the 
input variables. Therefore, the SVM was employed to 
predict eutrophication levels using the aforementioned 
easy-to-measure parameters. 

 3.4 Model development 

 A training dataset was used to determine the 
parameters and the SVM model was constructed 
using the GS module. To avoid underfi tting and 
overfi tting of the SVM model, an exhaustive 10-fold 
cross validation technique was used to select the 
optimal SVM parameters which can simulate as many 
as possible the real situations so that the model could 
adapt the new observations (Picard and Cook, 1984; 
Sajan et al., 2015). The training dataset was randomly 
divided into 10 equal subsets. Each subset was 
employed once as a validation dataset, whereas the 
other 9 subsets were grouped into a new training 
dataset, and the optimal parameters of the SVM 
model was found with the grid search (GS) technique 
(Cristianini and Shawe-Taylor, 2000; Zhang et al., 

2016). In this way, all the possible variability of the 
SVM model has been estimated in order to obtain the 
optimal parameters that minimize the average error. 
The results of classifi cation are mainly aff ected by 
kernel function parameter ( γ ) and the penalty 
parameter ( C ), which must be carefully determined in 
the SVM model because the former determines the 
accuracy of the classifi cation function and the latter 
controls the tradeoff  between the training error and 
model fl atness (Liu et al., 2006; Xu et al., 2015). 
Since the two parameters  C  and  γ  are independent, the 
GS process can be conducted in parallel. Specifi cally, 
a set of candidates are fi rstly selected for both  γ  and  C . 
Then each pair of C and  γ  is evaluated by cross-
validation and the pair with the highest accuracy is 
determined as the optimal parameters (Gao and Hou, 
2016). Figure 4 shows the map of optimization results 
of the SVM model. Both the penalty parameter  C  had 
optimal values of 64 and the kernel function parameter 
 γ  was 1. The classifi cation accuracy is the main fi tness 
factor.  

 Using the optimal parameters mentioned above, 
107 input datasets were selected as support vectors. 
The outcome was a trained SVM classifi cation model. 
The classifi cation accuracy rate was 88.3% for the 
cross-validation and 89.3% for the training dataset. 
These results clearly indicate the consistency between 
experimental results and model predictions and 
confi rm the validity of the SVC model. The 
classifi cation decision function is expressed as Eq.3: 
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i
f x a y x x b


   ,    (3) 

 where  x  and  x  i  are input vector spaces,  a  i  is Lagrange’s 
multiplier, y i    is the class label, and b is a scalar 
threshold that adjusts the bias of margins between the 
optimal hyperplane and the support vectors. 

 Table 4 Correlation matrix of all parameters 

   Turbidity 
(NTU) 

 Chl- a  
(μg/L)  aD%O  TP (μg/L)  TN 

(μg/L)  TRIX 

 Turbidity   1 

 Chl- a  (μg/L)  0.156 **   1 

 aD%O  0.349 **   0.044  1 

 TP (μg/L)  0.361 **   0.212 **   0.380 **   1 

 TN (μg/L)  0.269 **   0.251 **   0.274 **   0.431 **   1 

 TRIX  0.449 **   0.450 **   0.729 **   0.587 **   0.528 **   1 

  **  correlation is signifi cant at the 0.01 level. 
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 3.5 Model validation 

 The 295 samples of the validation dataset were 
used to verify the performance of the developed 
model, and the classifi cation results are presented in 
Table 5. The overall classifi cation accuracy was 
88.5% for the validation dataset. The samples of 
good, moderate, and poor trophic status were all well 
classifi ed by the SVM model (91.0%, 90.4%, and 
82.0%, respectively). The incorrectly classifi ed 
samples included 6 samples of good status, 15 samples 
of moderate status and 13 samples of poor status 
according to TRIX classifi cation, in which 3 of the 6 
good status samples had TRIX values of 4.9 to 5.0, 9 
of 15 moderate status samples had TRIX values of 5.0 
to 5.1 or 5.9 to 6.0, and 9 of 13 poor status samples 
had TRIX values of 6.0 to 6.1. Most incorrectly 
classifi ed samples had TRIX values near the 
boundaries. These results indicate good agreement 
between the SVM model and the multimetric trophic 
index TRIX. Therefore, it is feasible to use SVM as 
an eff ective approach to solve the problem of 
nonlinearities of the eutrophication status.  

 The SVM is a typical approach of artifi cial 
intelligence machine learning as a non-linear solution 
for classifi cation problems (Vapnik, 1995; Behzad et 
al., 2009). In particular, SVM accurately defi nes the 
global optimum values and can thus avoid over-fi tting 
the output values, resulting in better generalization 
performance. (Kovačević et al., 2010). Using SVM, 
we developed an eutrophication prediction method 
for coastal waters with high prediction accuracy. This 
methodology was successfully applied to evaluate the 
eutrophication levels of the Yellow Sea and East 
China Sea. Pinto et al. (2012) developed a two-level 
discriminant function analysis model for rapidly 
assessing the eutrophication risk (high or low) of a 
river from three easy-to-measure parameters (DO, 
turbidity, and temperature), providing an approximate 
72% prediction accuracy. Comparatively, the method 
developed by the SVM had a better performance, 
although it is always necessary to take into account 
the specifi cities of each location when used in other 
waters.  

 The study periods of summer and autumn in the 
Yellow Sea and the East China Sea showed 
signifi cantly diff erent characteristics of eutrophication 
status and the study area covered most of the coastal 
and off shore areas in the Yellow Sea and the East 
China Sea. The model developed here can adapt to the 
temporal and spatial variation of water quality 
parameters in the Yellow Sea and the East China Sea. 
Additionally, it can off er potential cost savings in 
marine monitoring programs considering that the 
model only uses three easy-to-measure variables: 

 Table 5 Results of SVM model validation 

 Data  Number of samples 
classifi ed by TRIX 

 Accuracy 
(%) 

 Number of samples classifi ed 
by the SVM model 

 Good  Moderate  Poor 

 Good  67  91.0  61  6  0 

 Moderate  156  90.4  6  141  9 

 Poor  72  83.0  0  13  59 

 Total  295  88.5  67  160  68 
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 Fig.4 Map of optimized SVM parameters obtained by grid search 
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DO, Chl- a , and turbidity. As such, this is an important 
fi nding and its application can help in rapid assessment 
of coastal and off shore areas. 

 3.6 Role of key variables in the SVM model 

 Path analysis is an extension of the regression 
model, and its path coeffi  cients are often used to 
assess the relative importance of various direct and 
indirect causal paths (the input variables) to the 
dependent variable (Streiner, 2005; Garson, 2008). In 
this study, path analysis was applied to investigate the 
importance of input variables DO, Chl- a , and turbidity 
that infl uence eutrophication levels, which could 
indirectly assist in identifying situations that might 
yield better model performances. Table 6 shows the 
direct, indirect, and total eff ects of DO, turbidity, Chl-
 a , and ranks the infl uence of the input variables on the 
eutrophication level. 

 Among the three input variables, DO had the most 
signifi cant eff ect on the evaluated eutrophication 
levels (Table 6). It is indispensable to the respiratory 
metabolism of most aquatic organisms and impacts 
the availability of nutrients and thus infl uences the 
productivity of marine ecosystems (García Nieto et 
al., 2013). DO was the main factor infl uencing the 
release of nutrients from the sediments into the 
overlying water under certain environmental states 
that could have a strong infl uence on the eutrophication 
status and the quality of water (Xie et al., 2003; Kim 
et al., 2004). The DO levels in water are very 
complicated and are mostly dependent on the salinity, 
temperature, depth, degradation of organic matter and 
the photosynthesis and respiration of phytoplankton 
(Badran, 2001; Wheeler et al., 2003; Manasrah et al., 
2006). Turbidity had the most signifi cant indirect 
contribution to the trophic state assessment by the 
SVM model. This is probably partly because turbidity 
is greatly infl uenced by the presence of organic and 
inorganic matter (Pinto et al., 2012). It is often used as 
an important test for water quality control. Turbidity 
as a variable is strongly related to eutrophication 

(Alonso Fernández et al., 2014). Most of the 
suspended matter has a large impact on the production 
of phytoplankton, macrophyte and periphyton 
communities by aff ecting the availability of light in 
the marine environment (Waters, 1995; Bilotta and 
Brazier, 2008). Therefore, turbidity plays a crucial 
part in determining the light intensity and impacting 
phytoplankton productivity. Chlorophyll a is a major 
photosynthetic pigment found in the phytoplankton 
species and its concentration is often used as an 
estimator of the productivity of the water body. It is 
one of the common water quality indicators for the 
assessment of the eutrophication status of the water 
environment (Lillesand et al., 1983; Baban, 1996).  

 In this study, the input variables were restricted to 
those parameters that were available by a CTD multi-
parameter probe. However, further research is needed 
to explore other easily measured variables that may 
improve the accuracy of SVM model prediction, such 
as absorption and fl uorescence parameters of 
chromophoric dissolved organic matter (CDOM). 
CDOM is often coupled with nutrients and plays an 
important part in the biogeochemistry cycle of 
nutrients. Absorption and fl uorescence measurements 
could provide information on the concentration and 
composition of CDOM (Stedmon et al., 2007; Zhang 
et al., 2011). It is also necessary to validate the SVM 
model with long-term data that will support the future 
feasibility of the model. 

 4 CONCLUSION 

 Using the SVM approach, we developed an 
eutrophication prediction model for coastal and 
off shore areas in the Yellow Sea and the East China 
Sea. With the optimized penalty parameter  C =64 and 
the kernel parameter  γ =1 obtained in training process, 
the classifi cation accuracy rates reached 89.3% for 
the training data, 88.3% for the cross-validation, and 
88.5% for the validation dataset. As demonstrated 
here, the application of only three easy-to-measure 
variables, DO, Chl- a , and turbidity resulted in the 
successful application of this model to evaluate TRIX 
classifi cation in the Yellow Sea and the East China 
Sea. Thus, the application of the model can assist in 
the rapid assessment eutrophication of marine 
conditions and regularly implement marine health 
management and eutrophication monitoring 
programs. Additionally, we are confi dent that the 
results obtained in this research will be benefi cial to 
enhance future work along similar fi elds, i.e., to 
develop other methodologies for assessment of 

 Table 6 Direct (DE), indirect (IDE), and total eff ects (TE) of 
DO, turbidity, Chl- a  on eutrophication level in 
path analysis 

 Variables 
 Contribution to eutrophication level    

 DE  IDE  TE 

 DO  0.657  0.075  0.732 

 Chl- a   0.397  0.054  0.451 

 Turbidity  0.158  0.291  0.449 
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eutrophication. Furthermore, the integrated SVM 
based classifi cation method and framework might 
have a large application potential, not only in trophic 
status evaluation but also in other environmental 
areas when it is well explored. 
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