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  Abstract             Line integral convolution (LIC) is a useful visualization technique for a vector fi eld. However, 
the output image produced by LIC has many problems in a marine vector fi eld. We focus on the visual 
quality improvement when LIC is applied in the ocean steady and unsteady fl ow fi eld in the following 
aspects. When a white noise is used as the input in a steady fl ow fi eld, interpolation is used to turn the 
discrete white noise into continuous white noise to solve the problem of discontinuity. The “cross” high-pass 
fi ltering is used to enhance the textures of streamlines to be more concentrated and continuity strengthened 
for each streamline. When a sparse noise is used as the input in a steady fl ow fi eld, we change the directions 
of background sparse noise according to the directions of vector fi eld to make the streamlines clearer and 
brighter. In addition, we provide a random initial phase for every streamline to avoid the pulsation eff ect 
during animation. The velocities of vector fi eld are encoded in the speed of the same length streamlines so 
that the running speed of streamlines can express fl ow rate. Meanwhile, to solve the problem of obvious 
boundaries when stitching image, we change the streamline tracking constraints. When a white noise is used 
as an input in an unsteady fl ow fi eld, double value scattering is used to enhance the contrast of streamlines; 
moreover, the “cross” high-pass fi ltering is also adopt instead of two-dimensional high-pass fi ltering. Finally, 
we apply the above methods to a case of the surface wave fi eld in typhoon condition. Our experimental 
results show that applying the methods can generate high-quality wave images and animations. Therefore, 
it is helpful to understand and study waves in typhoon condition to avoid the potential harm of the waves to 
people’s lives and property. 
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 1 INTRODUCTION 

 With the continuous development of marine 
exploration methods, the ability of humans to acquire 
marine environmental data has been continuously 
improved. As a result, the amount of accumulated 
data is constant increasing. These marine fl ow fi eld 
data that change at any time have become a signifi cant 
theoretical basis for revealing marine phenomena, 
preventing natural disasters, and studying marine 
dynamics mechanisms. Therefore, it is urgent to fi nd 
a tool that can eff ectively help researchers analyze 
and understand the laws contained in these data sets. 

Vector fi eld visualization technology can successfully 
visualize the massive and complicated ocean data by 
means of a graphic image. When the technology is 
applied to the marine, it can express these marine data 
intuitively and accurately, which can lay a good 
foundation for analyzing marine laws and forecasting 
marine disasters. 

 Images of vector fi elds should faithfully represent 
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the characteristics, e.g. sources and sinks, vortices, 
critical points, and separation lines. However, the 
standard visualization methods, such as arrows, icons, 
fi eld lines, fi eld ribbons, is constrained by spatial 
resolution, therefore none of them can describe the 
global fl ow features. By contrast, interactive texture-
based vector fi eld visualization, due to advantages of 
inherent compactness and high-quality texture, can 
reveal almost all the details of the fl ow fi eld. Hence, it 
is more suitable for expressing the marine vector fi eld 
with dramatic variations in direction. 

 Texture-based vector fi eld visualization mainly 
includes two methods: spot noise (van Wijk, 1991) 
and LIC (Cabral and Leedom, 1993). Spot noise 
generates a texture by distributing a set of intensity 
functions, or spots, over the domain, but this method 
is not suitable for the visualization of vector fi elds 
with relatively severe changes. Line integral 
convolution (LIC), uses a low pass fi lter to perform 
one-dimensional convolution on the noise image in 
order to produce a texture image highly correlated 
with the fl ow fi eld. LIC is more suited for the 
visualization of critical points, which is a key element 
in conveying the fl ow topology. Moreover, compared 
to spot noise, LIC can display all the details of the 
vector fi eld more clearly. Therefore, LIC is very 
suitable to be applied in the marine fl ow fi eld to 
observe and study the variations of ocean elements. 

 This paper is organized as follows. In Section 2, we 
briefl y introduce the LIC and previous work for 2D 
steady and unsteady fl ow fi eld. In Section 3, we apply 
LIC in the marine vector fi eld and propose specifi c 
improvements for the problems in the application. In 
Section 4, we show the results obtained by using our 
methods to a case of surface wave fi eld during the 
typhoon. Finally, we summarize and conclude in 
Section 5. 

 2 METHOD 

 2.1 Line integral convolution 

 LIC is an eff ective texture synthesis technique to 
visualize steady and unsteady fl ow fi elds. The 
eff ectiveness of the output images produced by LIC 
comes from two types of coherence: spatial and 
temporal coherence. 

 In the steady fl ow fi eld, the LIC maintains the 
spatial coherence by the method of value gathering 
along the streamlines to obtain the value of the pixel. 
Meanwhile, the temporal coherence is established by 
shifting the fi lter phase to allow the texture to move 

along the streamlines. Additionally, both the white 
noise and sparse noise can be used as background 
noise. When white noise is used as background noise, 
the orientation of the vector fi eld must be expressed 
by animation, while the static picture generated when 
sparse noise is used as background noise can express 
the orientation of the vector fi eld. 

 In the unsteady fl ow fi eld, the LIC can achieve the 
spatial and temporal coherence by using the methods 
of value scattering and successive feed-forward. The 
created animation can present the variations of a 
vector fi eld over time. 

 2.2 Previous work 

 The researches of LIC-based 2D fl ow fi eld 
visualization have developed LIC to several 
directions: (1) enhancing texture contrast between 
streamlines, (2) adding direction clues, (3) expressing 
velocity magnitude, (4) allowing real-time display, 
and (5) forming smooth and clear animation. Next, 
we will introduce the researches in steady and 
unsteady 2D vector fi eld visualization based on LIC. 

 2.2.1 Steady fl ow fi eld 

 Fast LIC (Stalling and Hege, 1995) is a method to 
speed up the LIC computation. It minimizes the total 
number of streamlines to be computed and exploits 
similar convolution integrals along a single streamline 
and thus reuses parts of the convolution computation 
from neighboring streamline texels. The multi-
frequency LIC (Kiu and Banks, 1996) uses multi-
frequency noise instead of white noise as the input 
noise. As a result, long and fat streaks indicate regions 
of the fl ow with higher velocity magnitude. Enhanced 
LIC (Okada and Kao, 1997) presents a double LIC 
method to enhance the texture contrast of the output 
image; it also uses colored texture images to highlight 
fl ow separation and reattachment boundaries. The 
enhanced fast LIC (Hege and Stalling, 1998) 
experiments with higher order fi lter kernels in order 
to enhance the quality of the resulting LIC textures. It 
also can enhance a user’s perception of the magnitudes 
and direction of the fl ow. Multivariate LIC (Urness et 
al., 2003) presents an extension to fast LIC that 
incorporates a new coloring scheme that can be used 
to incorporate multiple 2D scalar and vector attributes. 
OLIC (Wegenkittl et al., 1997) and FROLIC 
(Wegenkittl and Gröller, 1997) adopt a sparse noise 
texture and a ramp-like convolution kernel to let the 
output image indicate the orientations. Animated 
FROLIC (Berger and Gröller, 2000) achieves an 
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animation of the result via a color-table and is based 
on the observation that only the colors of the FROLIC 
disks need to be changed. Iterative twofold 
convolution (Weiskopf, 2009) is proposed as an 
effi  cient high-quality two-stage fi ltering method. The 
fi rst stage employs a compact fi lter, based on 
Lagrangian particle tracing; the second stage applies 
iterative alpha blending to implement a large-scale 
exponential fi lter. OGR LIC (Matvienko and Krüger, 
2015) considers the spectral properties of the dense 
fl ow visualization process as an integral operator 
defi ned in a local curvilinear system aligned with the 
fl ow. It achieves adaptive local spatial frequency 
control in fl ow visualization images not relying on 
noise injection. 

 2.2.2 Unsteady fl ow fi eld 

 Curvilinear grids and unsteady LIC (Forssell and 
Cohen, 1995) adopt pathline tracing instead of 
streamline tracing, as a result, it can successfully 
modify LIC to visualize unsteady fl ow fi eld. UFLIC 
(Shen and Kao, 1997, 1998) consists of a time-
accurate value depositing scheme and a successive 
feed-forward method, which can maintain the spatial 
and temporal coherence, so it can eff ectively trace the 
fl ow’s global features over time. UFLIC requires 
considerable time to generate each frame due to the 
huge amount of pathline integration that is computed 
for particle value scattering, so AUFLIC (Liu and 
Moorhead II, 2002; Liu and Moorhead II, 2005) is 
presented. It reuses pathlines in the value scattering 
process to reduce computationally expensive pathline 
integration in order to speed up display. In addition, 
many accurate parallel implementations of UFLIC 
(Li et al., 2006; Ding et al., 2015) are presented to 
visualize real-time unsteady fl ows with high spatial 
and temporal coherence. 

 To improve evaluating visualization quality, the 
theory of human visual perception is applied to the 
evaluation of visualization results and the improvement 
of visualization eff ects (Ma and Guo, 2018). Besides, 
LIC is also widely used in other fi elds, such as medical 
science, pencil hatching generation and so on (Höller 
et al., 2016; Li et al., 2016; Höller et al., 2017; Kong et 
al. 2018; Zheng et al., 2018). 

 3 IMPROVEMENT 
 In this section, by analyzing the problems when 

applying the LIC method to the marine vector fi eld, we 
will introduce our modifi cation methods to better apply 
LIC to the steady and unsteady marine fl ow fi eld. 

 3.1 Steady fl ow fi eld 

 3.1.1 White noise as input noise 

 3.1.1.1 “Cross” high-pass fi ltering 

 When the white noise is convoluted by the LIC to 
obtain the output image, for the sake of enhancing the 
contrast of the output image texture, the traditional 
method is to perform two-dimensional high-pass 
fi ltering on the output image. Two-dimensional high-
pass fi ltering has a sharpening eff ect on the image. 
The two-dimensional high-pass fi lter matrix evolved 
from the Laplacian operator. The evolution can be 
derived as: 

-1 -1 -1 0 0 0 -1 -1 -1
-1 9 -1 0 1 0 -1 8 -1
-1 -1 -1 0 0 0 -1 -1 -1

     
           
          

 .  

 However, since the two-dimensional high-pass 
fi ltering is isotropic high-pass fi ltering, it does not 
take into account the directionality of the vector fi eld, 
so the resulting image texture is not well contrasted 
and the continuity is not strong. Therefore, we design 
the “cross” high-pass fi ltering to improve this 
problem. The principle of “cross” high-pass fi ltering 
is to highlight the boundaries of streamlines and 
smooth the output texture. “Cross” high-pass fi ltering 
can be decomposed into 1D vertical fi ltering and 1D 
parallel fi ltering, which are perpendicular and parallel 
to the speed direction of any point in the vector fi eld 
respectively. 1D vertical fi ltering can enhance the 
textures of streamlines more concentrated and 
directional and emphasize the boundaries of 
streamlines since it can reduce the eff ect of streamline 
boundary texture on the center streamline. 1D parallel 
fi ltering can be used to strengthen continuity for the 
textures of each streamline because it can narrow the 
gap between adjacent textures on the streamline. 

 The calculation formula of the image after high-
pass fi ltering is as followed: 

  T  out = T  pre × M , 
 where  T  out  is the texture value of the pixel of the fi nal 
output image,  T  pre    is the texture value of the pixel of 
the preliminary image,  M  is the fi lter matrix. 

 Figure 1 shows the specifi c process of “cross” 
high-pass fi ltering. Firstly, the method of 1D parallel 
fi ltering is as followed.  V  p  is the instantaneous speed 
of point A on the streamline, and D and E are the two 
sampling points in the direction,  L  p  is the sampling 
distance of this direction. The fi lter kernel of this 
direction is a matrix of [1/3, 1/3, 1/3]. Similarly, the 
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method of 1D vertical fi ltering is as followed.  V  v  is 
perpendicular of the speed direction of point A, and 
B, C are the sampling points of this direction, and  L  v  
is the sampling distance in this direction. The fi lter 
kernel is a matrix of [-1, 2, -1]. The matrix of “cross” 
fi ltering can be obtained by combing the two fi lter 
kernel matrices. The “cross” high-pass fi lter matrix of 
point A is as followed: 

   
B

D A E

C

0 0 0 1 0
1/3 7/3 1/3 ,

0 0 0 1 0

M
M M M M

M

   
       
     

 where  M  A ,  M  B ,  M  C ,  M  D,   M  E  are the weight values of 
the fi ve points A, B, C, D and E in Fig.1, respectively. 
Moreover, the fi lter kernel matrix  M  will rotate as the 
speed direction of the point. For example, if the  V  p  of 
any point is perpendicular to the horizontal line, the 
matrix of this point is formed by rotating the matrix  M  
of point A 90 degrees. 

 1D parallel fi ltering is used to homogenize texture 
along the streamline, thus the sampling distance  L  p  is 
set to 1 so that the sampling pixel points are adjacent 
to the current pixel point on the same streamline. 1D 
vertical fi ltering can avoid the texture interaction 
between diff erent streamlines to make the streamline 
tighter and centralized. The eff ect produced by 
diff erent  L  v  is shown in the Fig.2. It can be seen from 
the image that the streamline gap in the texture image 
increases as  L  v  increases, and when  L  v  is too large, the 
streamline gradually becomes blurred. Therefore, it is 
signifi cant to choose appropriate  L  v , which can display 
the features in the image more clearly and intuitively. 
In this paper, we choose the value of  L  v  to be 2. 

 Figure 3 shows the original image, the image with 
two-dimensional high-pass fi ltering and the image 
with “cross” high-pass fi ltering ( L  v =2). As shown in 
Fig.3,   compared with the streamlines processed by 
the two-dimensional high-pass fi ltering, the 
boundaries of the streamlines processed by the “cross” 
high-pass fi ltering are more obvious, and the 
streamlines are smoother and more continuous. 

Streamlines
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 Fig.1 The process of “cross” high-pass fi ltering, the upper 
right corner is the fi lter matrix of point A 

a b c

 Fig.2 The image with “cross” high-pass fi ltering, the “ L  v ” is 1, 3, 5 (from left to right) 

a b c

 Fig.3 The original image (a), the image with two-dimensional high-pass fi ltering (b), and the image with “cross” high-pass 
fi ltering (c) 
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 3.1.1.2 Continuous background white noise 

 The streamline for each pixel starts at the center of 
this pixel and moves out in the positive and negative 
directions. Each pixel that passed through by the 
streamline is given a certain weight by the convolution 
kernel to convolve the white noise. In this way, we 
can obtain the fi nal texture value of the pixel of the 
output image. The streamlines by tracking the adjacent 
pixels have similar trajectories. However, since the 
white noise is a discrete random noise point when the 
background white noise points have been passed 
through by the streamlines of similar trajectories, are 
greatly diff erent, the image is prone to the 
discontinuity.  

 As shown in Fig.4, the two streamlines are formed 
by tracking the adjacent pixel points A and B. The 
white noise points have been passed through by the 
two streamlines which have similar trajectories, are 
very diff erent. Therefore, the output texture values of 
the two points obtained by convolution are also 
diff erent, resulting in poor continuity of the image. To 
solve this problem, we use the method of interpolating 
background white noise to change the discrete white 
noise into the continuous white noise; therefore, it can 
narrow the distinction in texture values of diff erent 
white noise points that have been passed through by 
streamlines that have similar trajectories. We use the 
method of bilinear interpolation using the formulas as 
follows: 

     

     

     

2 1
1 11 21

2 1 2 1

2 1
2 12 22

2 1 2 1

2 1
1 2

2 1 2 1

, ,

, ,

, , , ,

x x x xf x y f Q f Q
x x x x
x x x xf x y f Q f Q
x x x x
y y y yf x y f x y f x y
y y y y

 
 

 
 

 
 
 

 
 

   

 where ( x ,  y ) is the point to be inserted,  f ( Q  11 ),  f ( Q  2  1 ), 
 f ( Q  1  2 ),  f ( Q  22 ), are the texture values of the four adjacent 
pixels of the lower left, lower right, upper left, and 
upper right of the ( x ,  y ) point, respectively. ( x  1 ,  y  1 ), ( x  2 , 
 y  1 ), ( x  1 ,  y  2 ), ( x  2 ,  y  2 ) are the coordinates of the center 
point of the four pixels. 

 Before using our method, the texture inside the red 
rectangle has obvious anti-aliasing, as shown in 
Fig.5a. After adopting our method, the anti-aliasing 
phenomenon in the red rectangular frame is obviously 
improved due to the decrease of the background noise 
texture values of the streamlines tracked by adjacent 
seed points, as shown in Fig.5b. 

 3.1.2 Sparse noise as input noise 

 3.1.2.1 Changing the direction of sparse noise 

 When the background noise is sparse noise, the 
initial directions of the noise groups in the background 
noise are horizontal or vertical, while the directions of 
the streamlines in the fl ow fi eld may exist in all 
directions. Therefore, the directions of the noise 
groups are irrelevant to the directions of the fl ow 
fi eld, which may result in a wide streamline and 
blurred color. We use a method of changing the 
directions of the noise groups of the sparse noise 
according to the directions of the vector fi eld so that 
the noise groups can be roughly arranged according to 
the fl ow directions of the vector fi eld (Fig.6). The 
directions of the local vector fi eld are calculated by 
formula as follows: 

   
avg

0 8
,

9
ff ff

v
 




   

 where  v  avg  is the average vector size of the sparse 
noise group,  ff  [0]... ff  [8] are the vector values of the 
central portion of the sparse noise group, respectively. 

 As shown in Fig.7, when the noise groups of the 
sparse noise are uniformly arranged horizontally, the 
tilted streamlines have signifi cant gaps and blurred 
textures. After applying our method, since the 
directions of the noise groups have changed according 
to the directions of the vector fi eld, the formed 
streamlines can become more slender and brighter. As 
a result, the eff ect of visualization turns better. 

 Pseudo code is as follows: 
 Generate sparse background noise 

A
B

 Fig.4 The streamlines formed by tracking adjacent pixel a 
and b, the tracking step size is 13 
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 { 
    Setting a series of sparse noise groups for each 
arrangement direction; 
    For (areas where each sparse background noise 
group can move) 
    { 

   Calculating the average direction  v  avg  of the sparse 
noise group vector direction; 

   Select a sparse noise group corresponding to the 
direction according to  v  avg ; 

 } 
 } 

 3.1.2.2 Setting diff erent initial phases 

 When the background noise is sparse noise, the 
loop animation can be achieved by simply phase 
shifting the ramp-like convolution kernel for each 
frame accordingly. However, at the loop junction, the 
loop animation has a signifi cant abrupt displacement. 
This is because after the ramp-like convolution kernel 
is extended to a periodic function, the convolution 
kernel at the junction is not continuous. Its weight 
value is abruptly changed from the maximum value to 
zero. The same phenomenon occurs at the same time, 
causing a sudden shift in the loop animation. The key 
to the problem of loop animation is that all streamlines 

have the phenomenon of abrupt displacement at the 
same time, so we solve this problem by applying a 
random initial phase for each streamline in the image, 
causing the phenomenon of abrupt displacement for 
each streamline at a diff erent time. Therefore, we can 
form a coherent loop animation. 

 3.1.2.3 The speed of the streamline movement 
expresses the fl ow rate 

 The velocity of the fl ow fi eld is encoded in the 
length of the pixel traces (Wegenkittl et al., 1997), so 
the fl ow velocity can be expressed by the length of the 
streamline. Nevertheless, the animation did not work 
well especially for the areas with low fl ow rates. In 
this paper, we relate the magnitude of the fl ow velocity 
to the speed of the streamline movement. As a result, 
we express the fl ow velocity by the running speed of 
each streamline of the same length in the animation. 

 The method can be divided mainly into two stages, 
in which we use diff erent conditions for restricting 
streamline tracking. In the fi rst stage, we used a 
method to limit the tracking time of streamlines. 
Since each pixel has a diff erent vector velocity value, 
each streamline will have a diff erent motion distance 
during the same motion time, so that we can form 
streamlines of diff erent lengths according to the 

 Fig.6 The left image shows the original sparse noise 
group, the right image shows the sparse noise group 
improved by our method 

 Fig.7 The left and right graphs are streamline diagrams 
generated by applying sparse noise before and after 
improvement 

a b

 Fig.5 The image (a) is formed by discrete white noise, the image (b) is formed by continuous white noise 
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diff erent motion distance during the same time. In the 
second stage, we use a method of limiting the 
streamline tracking step size, so that we can form 
streamlines of the same length. According to the 
diff erences in the length of each streamline formed in 
the fi rst stage, the phase change rate of the convolution 
kernel is given for the corresponding same length 
streamline formed at the second stage. The phase 
change rate of the convolution kernel can change the 
movement speed of the streamlines. Hence, the 
velocity of the vector fi eld is closely combined with 
the running speed of the streamline to achieve the 
purpose of expressing the fl ow rate by using the 
running speed of the streamline of the same length 
during animation. 

 Pseudo code is as follows: 
 For (areas where each sparse background noise group 
can move) 
 { 
    Calculating the moving distance of each streamline 
at the same time; 
 } 
 Generating background noise; 
 Generating a ramp-like convolution kernel function; 
 For (each pixel of the image) 
 { 
    The corresponding convolution kernel change rate 
is assigned according to the length of the streamline; 
    Tracking streamline in the positive and negative 
vector direction some fi xed distance; 
    Convolution integral calculation to obtain the output 
texture value of the pixel; 
 } 

 3.1.2.4 Stitching image 

 When turning a planar image of the global current 
into a spherical image, there is a clear boundary when 

the two sides of the planar image are joined together. 
This phenomenon is caused by the stop of streamline 
tracking when the streamline is hit by the left and 
right side boundaries of the image. To solve this 
problem, we change the constraints of the streamline 
tracking, as a result, the streamlines can be tracked 
back and forth at the left and right side boundaries of 
the image, so that the sides of the image can be 
completely stitched together (Fig.8). Figure 9 is the 
fi nal spherical current image without boundary. The 
principle is as follows: 

lon,lat 0,0 0,1 ,

lon 0,lat lon 360,lat

lon 360,lat lon 0,lat

{ , , , }
if Direction=1

if Direction=
,

0

m nP P P P

P P

P P

 

 









   

 where subscripts lon and lat are longitude and latitude, 
respectively. The direction is the tracking direction, 0 
is the positive tracking, 1 is the negative tracking, and 
 m ,  n  is the resolution of the image in latitude and 
longitude. 

 As shown in Fig.8, the red frame area is the 

a b

 Fig.8 Current image before stitching (a), stitched current image (b) 
 The boundary inside the red box in (a) is improved in (b) 

 Fig.9 The spherical current image without boundary is 
formed by our method 
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boundary junction. There is a clear boundary in the 
red frame and the streamlines on the left and right 
sides are disconnected in Fig.8a. The boundary in the 
red box disappears and the streamlines are continuous 
without interruption after adopting our proposed 
method as shown in Fig.8b. 

 3.2 Unsteady fl ow fi eld 

 UFLIC (Shen and Kao, 1998) is a convolution 
algorithm that uses a time-accurate value scattering 
scheme to model the texture advection. In addition, 
the output image from the previous convolution is 
used as the input texture for the next time step in order 
to maintain the temporal coherence. Before the output 
image is used as input at the next step, noise jitter 
high pass fi lter should be applied to the output image 
to enhance the contrast among fl ow lines. 

 In order to further enhance the contrast of the 
streamlines in the image, we use a method of double 
value scattering for each time step, which is similar to 
the double LIC in the steady fl ow fi eld. Our method 
works as follows (Fig.10a): after the output image of 
any time step is processed by the high-pass fi lter, it is 
still used as the input for this time step to perform a 
value scattering again, and then the obtained output 
image processed by high-pass fi ltering is the fi nal 
output image of this time step. We jitter the fi nal output 
image with the original white noise texture to avoid 
aliasing. Afterwards, it is used as the input for the next 
time step. Similarly, we can get the fi nal output image 

of each time step in turn. In addition, we use the 
“cross” high-pass fi ltering mentioned above instead of 
two-dimensional high-pass fi ltering, which can 
enhance the textures more concentrated and strength 
the continuity of each streamline. The image produced 
by UFLIC and our method is shown in Fig.11. 

 3.3 Time and space complexity 

 3.3.1 Time complexity 

 In the steady fl ow fi eld, when white noise or sparse 
noise is used as the background noise, we use the 
Hanning convolution kernel and the ramp-like 
convolution kernel, respectively. The classical 
algorithm of LIC is to traverse all the pixels, in turn, 
so the time complexity is linear with n, where n 
represents the total number of points in the vector 
fi eld (the meaning of n is the same as the following). 
As a result, the time complexity of the classical 
algorithm of LIC is O(n). Because our improved 
methods do not add nested loops based on the classical 
algorithm, the time complexity of our methods is still 
O(n). 

 In the unsteady fl ow fi eld, because value scattering, 
calculating pixel values of output texture and high-
pass fi ltering are linear with n, the time complexity of 
our method is also O(n). 

 3.3.2 Space complexity 

 In the steady and unsteady fl ow fi eld, we apply for 
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 Fig.10 The fl ow charts of our algorithm for unsteady (a) and steady (b) fl ow fi eld 
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arrays based on the total number of points in the 
vector fi eld, so their space complexity is O(n). 

 4 IMPLEMENTATION AND RESULT 
 Every year, a large number of economic losses and 

casualties are caused by the waves formed by the 
typhoon in our country. Related researches have 
shown that 90% of the natural destructive power of 
the sea comes from the waves, and only 10% of the 
destructive power comes from the wind. The wind 
shelter that is often said at sea is actually avoiding the 
waves. Because any shelter cannot avoid the wind, it 
can only avoid the waves. According to statistics, the 
shipwrecks caused by the huge waves at sea account 
for 60% to 80% of the world’s shipwrecks. More than 
1 million ships in the world have been sunk in the 
waves. Given that, preventing the disasters caused by 
the waves is of vital importance. This paper aims at 
using our methods to provide support during marine 
disasters in an eff ort to prevent and decrease the losses 
for country and people in the future. 

 In this paper, we use the wave data sets of the 
Bohai Bay during the typhoon Damrey that occurred 
in 2012. Based on the above-improved methods, we 
use white noise or sparse noise as input in the steady 
vector fi eld, and the white noise as input in the 
unsteady fl ow fi eld to visualize the ocean waves. The 
fl ow chart is shown in Fig.10. 

 The computer environment used for visual 
simulation in this paper is Intel core i7-2760QM 2.4G 
P4 CPU, 8GB DDR3 memory and Nvidia NVS 4200 
graphics card. The operating system is Windows 7 64-
bit SP1 and the development environment is Visual 
Studio 2010. 

 We conducted research based on wave data sets 
generated by Typhoon Damrey. The tropical storm 
Damrey was launched on the evening of July 28, 
2012. At 20 o’clock on the 28th, its center was located 

on the northwest Pacifi c Ocean surface of 1 330 km 
south-southeast of Tokyo, Japan. At 8 o’clock on 
August 1, it was strengthened into a typhoon. It 
entered the East China Sea in the early morning of 
August 2, and then landed onto the coast of Jiangsu 
Province at 21:30. Soon afterwards, it started moving 
to the Shandong Province. At 9:00 on August 3, it 
weakened into a tropical storm in Laiwu City, 
Shandong Province. At 2 o’clock on August 4, it 
entered the Bohai Sea, then it weakened into a tropical 
depression in the northwestern part of Bohai Sea at 8 
o’clock, and its residual circulation landed in 
Liaoning. 

 We use the wave data sets around the Bohai Sea 
during the typhoon Damrey. The specifi c time of the 
data sets are from midnight on August 1 to 23 on 
August 3, and the latitude is 37°–41.1°N, the longitude 
is 117.6°–124°E. We simulate the wave images by 
using our methods when the white noise or sparse 
noise is the background noise in the steady fl ow fi eld 
(Fig.12), and when the white noise is the background 
noise in the unsteady fl ow fi eld (Fig.13). We use 
textures to represent the direction of the waves and 
colors to indicate the height of the waves. The images 
in Fig.13 are sequentially generated over time during 
a typhoon. As can be seen from the Figs.12 & 13, our 
method can clearly show the direction and height of 
waves at any position in the vector fi eld compared to 
the traditional method of using arrows to indicate the 
direction of the waves. Since it does not miss any 
detail of the waves in the vector fi eld, it can help the 
ships at any position in the sea to know the direction 
and height of the waves in real time. At the same time, 
it can also help ships determine the specifi c location 
and movement of the disastrous waves, so that the 
ships can formulate a reasonable navigation route to 
avoid a shipwreck accident. In addition, our methods 
can also display the direction change of the coastal 

 Fig.11 The image generated by UFLIC (left) and our method (right) 
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a b

 Fig.12 The images of surface waves are generated in a steady fl ow fi eld based on white noise (a) or sparse noise (b) 
 The height of waves is expressed by the color. 
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 Fig.13 The images of surface waves, the height of waves is expressed by the colors 
 The images are formed in turn by the methods in the unsteady fl ow fi eld over time. 
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waves in the whole coastal area all the time, thus it 
can provide better support for the wave prevention 
work in the coastal areas. 

 The images generated by our visualization methods 
can clearly show every detail of the wave vector fi eld. 
Consequently, it is possible to provide assistance in 
reducing the damage caused by the waves in the 
typhoon to people’s lives and property. 

 5 CONCLUSION 

 High-quality vector fi eld visualization can help 
users comprehend the hidden rules behind a large 
number of messy data more clearly and intuitively, 
especially for marine vector fi eld which is containing 
large-scale data. Based on the LIC, this paper studies 
the improvements in the visual quality of the ocean 
fl ow fi eld. When the white noise is the background 
noise in the steady fl ow fi eld, we use the methods of 
interpolating background white noise and “cross” 
high-pass fi ltering in order to enhance the textures of 
streamlines more concentrated and strengthen 
continuity for each streamline, as a result, the output 
image can better express the streamlines and 
characteristics of vector fi elds. When the sparse noise 
is used as input in the steady fl ow fi eld, improvements 
are made by changing the directions of background 
sparse noise and setting diff erent initial phases. As a 
consequence, the streamlines of the output image are 
slender and the loop animation is clear and smooth. 
We also encoded the velocities in the speed of 
streamline movement in order to express the velocities 
of fl ow fi eld by the running speed of same length 
streamlines. Furthermore, we change the streamline 
tracking constraints to solve the problem of obvious 
boundaries when stitching image. When the white 
noise is the background noise in the unsteady fl ow 
fi eld, we use the methods of double value scattering 
for each time step and “cross” high-pass fi ltering so 
that we can obtain clearer texture image. Based on the 
wave data sets of Bohai during typhoon Damrey, the 
output images generated by our methods can display 
all the details of a vector fi eld, and the animation can 
clearly and intuitively show the changes of the height 
and orientation of waves over time. It is useful to 
avoid disaster damage to people’s lives and property. 
It is believed that our methods are of practical help to 
marine disaster precaution and mitigation. 
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