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  Abstract       Internal solitary waves (ISWs) always happen in marginal seas, where stable stratifi cation 
exists. ISWs may carry large energy when they propagate and aff ect marine engineering constructions 
such as marine drilling platforms. Previous studies, including a large number of mooring observations and 
laboratory experiments, show the speed of ISWs will change when they pass by shelf slopes. Korteweg-de 
Vries (KdV) theory explain this phenomenon. In the paper, we use a laboratory experiment and a numerical 
model experiment to verify this theory. In the laboratory experiment, we injected two layers of water of 
diff erent densities in a tank to simulate marine stratifi cation and make ISWs. We use a CCD camera to 
record the whole process. The camera can take 16 photos per second. In the numerical experiment, we input 
the same original conditions as the laboratory one. The results of 18 diff erent original conditions show the 
dimensionless factor  δ  plays a key role in deciding the amplitudes and shapes of ISWs. The main conclusion 
also contains that small-amplitude waves match well with KdV theory while mKdV is better for large-
amplitude waves. Whether the laboratory experiment or numerical experiment shows results with a high 
agreement. In future studies, we may use a numerical model with higher resolution to get analysis about 
phase speed and energy of ISWs.    
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  1 INTRODUCTION  

 Numerous in-situ and remote-sensing observations 
demonstrated internal solitary waves (ISWs) and 
nonlinear wave trains in marginal seas and coastal 
water (Vlasenko and Hutter, 2002). A large number of 
observations in the world’s oceans have shown that 
variable topography plays a crucial role in the shoaling 
of ISWs (Osborne and Burch, 1980; Apel et al., 1985; 
Holloway et al., 1997). The shapes of ISWs over 
continental shelf-slope remains a problem of 
considerable interest in coastal oceanography, but the 
study of ISWs was primarily based on traditional 
weakly nonlinear theories among which the Korteweg-
de Vries (KdV) theory (Benjamin, 1966; Ono, 1975; 
Rockliff , 1984) was commonly used. Nevertheless, it 
is commonly recognized that such theories have 
certain limitations when applied to the realistic ocean, 

i.e., the capability to match observational data 
decreases as the wave amplitude increases (Vlasenko 
et al., 2005). This inspires researchers to develop 
theories incorporating higher-order nonlinear terms 
(Grimshaw et al., 1999), or to derive an equation 
system that is capable of delineating full nonlinearity 
(Vlasenko and Hutter, 2002; Vlasenko et al., 2010). 
To overcome this limitation, nowadays by the rapid 
development of the techniques of computational fl uid 
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dynamics together with the availability of powerful 
supercomputers, comprehensive oceanic model based 
on the primitive equations are developed and 
successfully implemented to simulate ISWs. In the 
Extended Kdv-type equation, “critical depth” exists 
where the nonlinear coeffi  cient is zero. The thickness of 
the two layers are the same, and the ISWs will disappear 
(Tsuji and Oikawa, 2007; Nakayama et al., 2019). 

 Laboratory experiments on ISWs over continental 
shelf-slope have been conducted by a large number of 
scientists (Helfrich, 1992; Michallet and Ivey, 1999; 
Hsu and Ariyaratnam, 2000; Hüttemann and Hutter, 
2001). Helfrich (1992) fi nd a mixing process will 
happen when an incoming wave passes by a slope and 
splits into serval waves. The baroclinic solitary waves 
in a two-layer fl uid system with the diff usive interface 
was investigated by Hüttemann and Hutter (2001). 
They defi ned two kinds of solitary waves: a fast, 
ground model soliton and a second-mode soliton.  

 Numerical simulation of ISWs is also conducted 
by many scientists. Several kinds of ridges under the 
water was simulated in a two-layer fl uid system. 
Features of ISWs including energy dissipation, 
amplitudes and refl ection are proved to have a 
connection with “the degree of blocking”. MCC-type 
theories are also reproduced by numerical modes 
(Zhu et al., 2016, 2017, 2018). Nakayama (2006) 
used six diff erent models to verify which one is 
suitable to solve the equation. Scientists also 
combined laboratory experiments and numerical 
experiments together to crosscheck the experiment 
results. Grue et al. (1999, 2000) used a laboratory-
size and two-layer system model to simulate the 
process of wave breaking and broadening of ISWs. 
Nakayama et al. (Nakayama and Imberger, 2010; 
Nakayama et al., 2012) used a 3-D model to do the 
same work. 

 The previous laboratory experiment of ISWs over 
the continental shelf is, however, limited and not all-
inclusive. We comprehensively conducted a series of 
fundamental experiments on generation and 
propagation of ISWs over continental shelf-slope in 
the laboratory to investigate the evolution of ISWs in 
a diff erent stratifi cation. The laboratory and numerical 
experiment setup are illustrated in Section 2. The MIT 
general circulation model (MITgcm) is also applied 
to simulate ISWs with the same domain, topography, 
and stratifi cation. Section 3 shows experimental and 
numerical results. Based on the result, KdV-type 
theories are also shown in Section 4. Finally, we 
conclude in Section 5.    

 2 MATERIAL AND METHOD 

 2.1 Experiment setup 

 We conducted the experiments on a two-layer fl uid 
in a laboratory water tank, the size of the tank see 
Fig.1, together with the experiment system. The upper 
layer is freshwater whose density is 1.00 g/cm 3  with 
thickness  H  1 , while the lower layer is dyed salty water 
with 1.02 g/cm 3  density, and layer thickness  H  2 . A 
continental shelf-slope which has a semi-cycle 
forepart, 16 cm high and 1.3 m wide, is deployed on 
the right-hand side of the tank. Gravity collapse 
method is implemented to produce initial ISWs on the 
left-hand side. In advance of experiment, some control 
tests have run to ensure that the distance between the 
wave production area and continental shelf-slope is 
large enough for the evolution to ensure waves have 
fully developed to stable ISWs when they propagate 
to continental shelf slope. A CCD camera will 
photograph the whole process of propagation and 
evolution of ISWs in the darkness indoor environment, 
with a sampling frequency of 16 frames per second.  

 Factors governing the experiment include (1) the 
ratio of the thickness of the upper freshwater H 1  to the 
lower salty water  H  2  under the condition that is 
keeping total thickness constant,  H  1 + H  2 =0.31 m, (2) 
the amplitude of an incident wave is determined by 
initial step depth  η  0  in the production area. Other 
factors, such as the size of continental shelf-slope and 
the density of the upper and lower water, etc., are kept 
as constants. Three kinds of the ratio  H  1 / H  2 , 5/26 cm, 
7.5/23.5 cm, and 10/21 cm and six categories of initial 
step depth  η  0  , 2, 4, 6, 8, 10 and 12 cm for a depression 
type ISWs are considered. Time series of the 
pycnocline fl uctuation is derived from the photography 
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 Fig.1 Sketch map of the experiment system 
 The red dashed line is the border of salty water and freshwater. The water 
tank is 5-m long, 0.15-m wide and 0.4-m high. The CCD camera capturing 
area is 1.71-m long and 0.96-m wide with a very fi ne spatial resolution 890 mm. 
Here  h  1 > H  1  always, which means we will force on depression ISWs. 
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obtained by CCD camera. Figure 2 displays the nine 
vertical sections which are selected to do the analysis.  

 2.2 Numerical experiment set up 

 The fully non-linear non-hydrostatic version of the 
MIT general circulation model (MITgcm) (Marshall 
et al., 1997) is applied to reproduce the behavior of 
ISWs in the laboratory tank. MITgcm solves the 
primitive equations, and importantly, it can take the 
non-hydrostatic eff ect, which is indispensable for the 
simulation on internal solitary waves, into account 
(Marshall et al., 1997).This model was used to study 

the generation process of multi-modal ISWs in the 
northern South China Sea (Vlasenko et al., 2010). 
However, the combination of the laboratory 
experiment and numerical simulation is rare.  

 The bathymetry data and the model confi guration 
are as same as the realized laboratory situation, 
namely, with a two-dimensional  x - z  domain, with a 
length of 5 m and a depth of 0.31 m, including 10 cm 
upper layer and 21 cm lower layer respectively. The 
initially homogeneous domain-wide distribution of 
temperature is 170°C and salinity is 27.5 in the lower 
layer, 1.0 in the upper layer. The grid resolution in the 
vertical direction and horizontal direction both are 
0.1 mm, and the timestep is set up to be 0.000 2 s, 
which can make the computation satisfy Courant-
Friedrichs-Lewy (CFL) condition very well. 

 3 RESULT 

 3.1 Experiment result 

 3.1.1 Relationship between amplitude and other factors  

 Figure 3 shows the relationship between the initial 
step depth η 0  and the amplitude of the incident leading 
wave. In three cases of the ratio  H  1 / H  2 , the amplitudes 
of incident leading waves are all connected with 
initial step depth  η  0 . In other words, a larger nonlinear 
coeffi  cient accounts for larger wave amplitude. 
Conversely, small step depth corresponds with small 
amplitude. This is very intuitional because larger 
initial step depth represents higher potential energy, 
which will produce larger amplitude incident waves. 
In the derivation of KdV equation, the nonlinear 
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 Fig.2 Vertical sections selected to conduct the analysis 
 Sections of 10, 30, 50, and 70 cm are located in front of continental shelf-slope, and 90-cm is just arrived at the slope, while 110, 130, 150, and 170 cm are 
on the fl at shelf.  
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 Fig.3 The amplitude of ISWs under the case of diff erent 
initial step depth on the 30-cm location 
 This fi gure shows relationships between the amplitude of incident 
leading waves and the initial step depth  η  0 . The stable waves on the 
vertical section of 30-cm location are defi ned as the incident leading 
waves.  δ  represents the dimensionless factor,  δ =| H  1 - H  2 |/( H  1+  H  2 ).  
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coeffi  cient serves as a scaling parameter, which means 
the ratio of the wave amplitude and total water depth 
 H . It means a larger nonlinear coeffi  cient accounts for 
larger wave amplitude. (Gerkema and Zimmerman, 
2008.) Additionally, amplitudes of incident waves are 
found to be in proportion to the dimensionless factor 
 δ =| H  1 – H  2 |/( H  1 + H  2 ). However, it is also noticeable that 
the case of  η  0 =2 cm and  η  0 =6 cm do not obey the 
above the law, a reasonable guess is an experimental 
error, as for the case of  η  0 =2 cm, the experiment data 
is relatively small. Therefore, even a small 
experimental error can play a signifi cant role. 

 The waveform can be delineated in Fig.4. The 

waveform will be closer to the theoretical standard 
one. The theoretical standard waveform can be 
calculated by MITgcm according to the KdV equation 
(Yuan et al., 2018a, b).The fl uctuation after leading 
wave was more signifi cantly suppressed when the 
dimensionless factor is larger. On the contrary, under 
the situation of a small dimensionless factor, the 
waveform will diff er far from the theoretical standard 
waveform, and the fl uctuation after leading wave was 
evident. The dimensionless factor corresponds with 
the amplitude of the incident leading wave, certifying 
conclusions in the above part. 

 3.1.2 ISWs over a continental shelf-slope 

 Three kinds of the ratio  H  1 / H  2  ( H  1  is the thickness 
of the upper freshwater, and  H  2  is the thickness of the 
lower dyed salty water, shown in Fig.1) are considered, 
and distinguishable results are demonstrated in the 
following sections. 

 Considering the height of the continental shelf is 
16 cm, the ratio of the thickness  H  1 / H  2 =5/26 cm is 
changed to  H  1 / H  2 =5/10 cm after ISWs propagate onto 
the continental shelf. As a result,  H  1  is always smaller 
than  H  2  no matter in front of or over the continental 
shelf. Figure 5 shows the amplitudes of pycnocline 
fl uctuation on nine sections, respectively. The 
continental shelf-slope almost does not infl uence the 
propagation of ISWs if the step depth η 0  is small. 
However, as for substantially large step depth, the 
amplitude decreases rapidly when ISWs propagate 
onto the continental slope. Then the lower salty water 
gets thin gradually with ISWs propagating onto the 
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 Fig.4 Time series of pycnocline fl uctuation on the vertical 
section of 10-cm in the case of initial step depth 
 η  0 =4 cm 
  δ  represents the dimensionless factor,  δ =| H  1 – H  2 |/( H  1 + H  2 ). 

0 20 40 60 80 100 120 140 160 180
Location (cm)

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

A
m

p
li

tu
d
e 

(c
m

)

η
0
=2 cm

η
0
=4 cm

η
0
=6 cm

η
0
=8 cm

η
0
=10 cm

η
0
=12 cm

 Fig.5 The amplitudes of pycnocline fl uctuation on nine sections in the case of six kinds of initial step depth and Fig.2 shows 
the location on the  x -axis 
 The amplitudes display an obvious increase as ISWs propagate to 90-cm location and attenuate sharply after 90-cm location in the precondition of 
substantially large initial step depth. 
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continental shelf, resulting in the increasing non-
linearity simultaneously. Then the waves continue to 
propagate along the shelf, at the same time, the 
thickness of lower salty water is decreasing 
continuously and consequently, the friction is getting 
large, as a result, the amplitude of ISWs attenuates 
very quickly from 110 to 170 cm location. If we keep 
eyes on the 90 and 170 cm, the averaged attenuation 
rate of amplitude is 15%. Now we can claim the 
shoaling process can cause the polarity deepening. 

 For the ratio of the thickness  H  1 / H  2 =10/21 cm, it is 
altered to  H  1 / H  2 =10/5 cm after ISWs propagate onto 
the continental shelf. Therefore,  H  1  is smaller than  H  2  
in front of the continental slope and turns to be larger 
than  H  2  over the continental shelf. As is shown in 
Fig.6, trailing waves after leading wave is noticeable, 
which can be explained by the small dimensionless 
factor  δ =0.35. The eff ect of nonlinearity is weak, and 
consequently. The waveform diff ers far from the 
theoretical standard waveform. On time 20 s, ISWs 
propagate to continental slope and begins to have an 
interaction between both, then the pycnocline ascends 
quickly between 28 s and 35 s, which indicates the 
process of polarity transition, and we will give a more 
detailed delineation next. On the vertical section of 
170 cm, ISWs transform the polarity completely. 
Depression ISWs reverse their polarity and turn to be 
elevation ones. 

 It is worthy of highlighting the process of polarity 
transition. Details are shown in Fig.7. The waveform 
is symmetric before ISWs propagating onto the 
continental shelf-slope (Fig.7a). Due to the 
topography, the lower layer decreases gradually, and 
according to KdV theory, which means the eff ect of 
non-linearity also decreases. As a result, the speed of 
the water particle on wave trough turns to be smaller 
than the water particle on wave trail, which makes the 
waveform steeper on the trail and more fl at on the 
frontal face (Fig.7b). With the propagation, the 
waveform on frontal face deforms to be parallel to 
continental shelf gradually (Fig.7c). At the last stage, 
depression ISWs change their polarity completely 
and transform into elevation ISWs (Fig.7d).  

 Considering  H  1 / H  2 =7.5/23.5 cm, it is changed to 
 H  1 / H  2 =7.5/7.5 cm after ISWs propagate onto the 
continental shelf. Figure 8 displays the fl uctuation of 
pycnocline on nine vertical sections in the case of the 
initial step depth  η  0 =8 cm. It shows that the polarity of 
ISWs attenuates gradually with the propagation over 
the continental shelf slope, and at last the non-linear 
ISWs develop into the linear periodic fl uctuation.  

 Besides the phenomena of overturning, we can 
also observe break dissipation and mixing in all the 
three kinds of  H  1 / H  2 , in the precondition of large 
amplitude. However, the lack of velocity data does 
not allow us to analyze these mechanisms in detail.   
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 Fig.6  H  1 / H  2 =10/21 cm, the pycnocline fl uctuation on nine vertical sections in the case of the initial step depth  η  0 =8 cm 
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 3.2 The numerical result 

 About ISWs, we need to know one of the wave 
properties and based on it. Then the others can be 
calculated via the theory. Because of this reason, the 
amplitude is selected to verify the numerical model 
result. Figure 9 shows the comparison between 
laboratory experiment and the MITgcm model, from 

which we can fi nd the coincidences between model 
and experiment on all nine vertical sections are very 
satisfi ed, except the two sections of 110 cm and 
170 cm. About 20% relative error happens in the two 
sections. We consider a reasonable explanation for the 
error at 110-cm section is that wave breaking and 
mixing happened when it passed the slope. At 170-cm 
section, it is very close to the end of the tank. Boundary 
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 Fig.7 CCD cameras photography at 30 s, 34 s, 38 s, and 42 s, respectively (a–d) in the case of initial step depth  η  0 =8 cm 
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 Fig.8 In the situation of  H  1 / H  2 =7.5/23.5 cm, the pycnocline fl uctuation on nine vertical sections in the case of the initial step 
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refl ection is the cause of the error. This great 
agreement corroborates the capability of numerical 
ocean model to simulate small-scale nonlinear 
phenomena. It also can lay a foundation for real ocean 
simulation, specifi cally speaking. This result inspires 
us that before we do some time-consuming three 
dimensional and high-resolution oceanic simulation. 
It is a good choice to do some comparison experiment 
at fi rst to determine a set of parameters to avoid or 
reduce the trials to parameterization.   

 By using high spatial and temporal resolution, 
together with the verifi cation of model into account, 
we can claim numerical results, can be used to conduct 
analyses. Figure 10 shows the time series of salinity 
in depth 10 cm. It can be seen the phase speed of the 
leading wave is approximately 10 cm/s, and it is 
10.4 cm/s detected in the laboratory experiment, 
again they both have a good agreement. The waves 
have a strong interaction with the continental shelf-
slope when they reach topography, and then scatter 
upon the shoaling topography, either advancing 
further upslope, being partially refl ected, or being 
locally dissipated. It is clear that the transmitted wave 
has a phase speed of 6.7 cm/s, while the opposite 

direction wave 9.1 cm/s. However, this opposite 
direction wave is not a refl ected wave, as its speed is 
signifi cantly larger than the refl ected wave. After 
combined consideration with the laboratory result, we 
guess it is possibly the gravity fl ow caused by the 
strong wave break and mixing when the waves 
encounter the topography. The trailing waves and 
some weak fl uctuations after the leading wave is also 
apparent in the fi gure.  

 4 DISCUSSION 
 4.1 The wave properties 

 According to a weakly non-linear theory, ISWs can 
be explained by Korteweg-de Vries equation: 

  η  t + C  0  η  x + αηη  x + βη  xxx =0.         (1) 
 In the formula,  η  is the wave displacement, 

subscripts  x  and  t  are spatial and temporal derivatives. 
 α  and  β  are the non-linear and dispersion coeffi  cients, 
respectively, for a two-layered fl uid, these coeffi  cients 
read 
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 It can easily fi nd the non-linear coeffi  cientαis in 
proportional to the dimensionless factor  δ  mentioned 
above, despite the minor diff erences in notation. So 
the large dimensionless factor represents the prominent 
eff ect of non-linearity naturally, and that is the reason 
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why large dimensionless factor corresponds with the 
close-theory standard waveform and large amplitude. 

 The linear speed in the two-layered fl uid (Wessels 
and Hutter, 1996): 
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 The relationship between normalized wave speed 
and amplitude when the thicknesses are the same (Xu 
and Yin, 2012): 
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  ζ = z /( H  1  +H  2 ),       (8) 

 where  ρ  and  H  are the densities and thicknesses of the 
two layers. If the speed of ISWs  C > C  0 , then call  C  as 
supercritical speed; and  C < C  0 , subcritical speed 
(Walker et al., 1998). The relationship between the 
dimensionless speed and amplitude is delineated in 
the plot depicted in Fig.11, and it can be shown that 
this research has a coincidence with the previous 
investigation (Wallace and Wilkinson, 1988; 
Ariyaratnam, 1998; Walker et al., 1998; Chen, 2004). 
According to Eq.4, when the thicknesses are the same, 
αwill approach to zero. The internal solitary wave 
will disappear and  η  0  will become little. At the same 
time, the normalized wave speed will also get close to 
zero. Kdv theory is not suitable for explaining this 
condition. 

 In Eqs.5–8,  z  is the distance from the bottom of the 
tank when  H  1  and  H  2  are standardized.  Φ  changed 
with  z  linearly, with the boundary condition  Φ (0)=0, 
 Φ (1)=0. And  Φ  is 1 at the boundary between the two 
layers. According to Eq.5 we calculate  N =1.07 when 
 H  1 =0.1 m and  H  2= 0.21 m. 

 4.2 The comparison between experimental result 
and KdV (mKdV) theory 

 Michallet and Barthélemy (1998) divides ISWs 
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into two types according to their amplitudes: small-
amplitude ISWs ( a / H <0.05) and large-amplitude 
ISWs ( a / H >0.05). They also concluded that KdV 
theory agrees well with small-amplitude ISWs, while 
the mKdV theory has a prominent capability to 
delineate large-amplitude ISWs. For a two-layered 
fl uid, KdV equation has an analytical solution and 
read: 

 2( , ) sec ( ),kx C t
x t a h




    (9) 

 where  η  is the wave displacement, a is the amplitude, 
 C  k  is the theoretical speed,  λ  is the wavelength. It 
needs to connect with Eqs.10 & 11. 
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 Connecting with Eqs.13–18: 
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 Figure 12 displays the comparison between theory 
and laboratory experiment. The value of  a / H  is 
0.029, 0.049, 0.11 and 0.14 corresponding to initial 
step depth 2 cm, 4 cm, 10 cm, and 12 cm, which 
indicates the fi rst two are categorized into small-
amplitude ISWs and last two large-amplitude ISWs 
respectively. It is obvious that for small-amplitude 
ISWs, KdV theory has a better match than mKdV; 
whereas, for large-amplitude, mKdV is better, 
verifying the conclusions of Michallet and 
Barthélemy (1998).   

 4.3 Energy relationship 

 The transmitted wave, gravity fl ow, wave breaking, 
and wave mixing point out that energy analysis is 
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maybe useful. The depth-integrated kinetic energy 
(KE) density is given by: 

 2 2 2
0

1KE= d .
2

u v z           (19) 

 In the formula,  ρ  0  is the average density, and the 
bracket means calculating the average quantity during 
a wavelength. Vallis (2006) calculated the depth-
integrated available potential energy (APE) density as 
the following formula: 

  21APE= g ( ) ( ) .
2

z z      (20) 

 In the formula,  z  matches the surface of equal 
density. The vertical integration is over the density 
range from 1 000.0 to 1 020.0 kg/m 3 . And the resultant 
energy is RE=APE+KE. Figure 13 illustrates the 
energy of corresponding sections when the main wave 
passed the section. Energy is concentrated on the 
main wave when the wave passed the section of 
110 cm. The incident waves happened here are 
depression wave and transform to elevation waves 
after propagating onto the continental shelf-slope, 
compared with Fig.6. It is clear that the KE decreases 
rapidly while the APE increases simultaneously, and 
the APE reaches its peak on the continental slope 
(located at 90-cm in the picture), followed by a 
gradual decline, indicating a signifi cant dissipation. 
Because of the same reason, the KE also experiences 
a fall after propagating onto the continental shelf. The 
energy ratio KE/APE is ranged from 1.1 to 3.1, which 
is comparable with 1.04 reported by Moum et al. 
(2007) obtained on Oregon’s continental shelf, and 
1.4 by Klymak et al. (2006) in the northern South 
China Sea.  

 5 CONCLUSION 

 This paper used a laboratory experiment and 
numerical simulations. Their results matched well, 
demonstrating that the ability of the numerical 
simulations to mimic the evolution of internal solitary 
waves, even in scales of laboratory water tank, and 
more importantly, since the laboratory experiments 
only provide the displacement of the interface, in 
addition to this, numerical simulations can also 
provide velocity profi led, which makes the occurrence 
of the exploration of energy budget. Besides, we 
obtain a set of parameterization scheme (such as the 
order of viscosity coeffi  cient) which could guide 
some further simulations. 

 We comprehensively investigate the propagation 
and evolution of ISWs over a continental shelf slope, 
considering three cases of stratifi cation, i.e., 
 H  1 / H  2 =5/26 cm, 7.5/23.5 cm, and 10/21 cm. 
Experiment results contain four aspects. Firstly, 
dimensionless factor  δ =| H  1 – H  2 |/( H  1 + H  2 ) plays a key 
role in shaping the amplitude and waveform of 
incident ISWs. The amplitude is large, and the 
waveform is close to the theoretical standard 
waveform when the dimensionless factor  δ  is large, 
and on the contrary, the amplitude is small, and the 
waveform diff ers far from the theoretical standard 
waveform when the dimensionless factor  δ  is small. 
The essential of the relationship between 
dimensionless factor  δ  and amplitude and waveform 
is the nonlinearity. Secondly, the distribution of 
dimensionless amplitude and speed also coincides 
with the previous investigation. Thirdly, for ISWs 
whose amplitude is small, the continental shelf-slope 
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plays a minor role. However, for those with a 
substantially large amplitude, the continental shelf-
slope does have some various infl uences. Fourthly, 
under diff erent ratio scenarios, for the case of 
 H  1 / H  2 =5/26, the polarity of ISWs is deepened when 
waves propagate to the continental shelf, while for the 
case of  H  1 / H  2 =10/21, the phenomenon of polarity 
transition emerges, and for the case of  H  1 / H  2 =7.5/23.5, 
ISWs transform into periodic waves.  

 Except these, the comparison between laboratory 
experiment and KdV (mKdV) theory shows that 
KdV theory is better in explaining small-amplitude 
waves, while mKdV is more suitable to large-
amplitude waves. After that quantitative comparison 
between laboratory experiment and MITgcm model 
shows an unbelievable agreement, demonstrating 
the capability of the model to simulate ISWs in the 
laboratory tank and more importantly, provide 
some inspiration to how to tackle the 
parameterization to the real ocean simulation. 
Furthermore, based on the high resolution and 
accurate numerical result, we also conduct some 
analyses to phase speed and energy.   
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