Cite this paper:
YU Yang, ZHANG Xiaojun, LIU Jingwen, LI Fuhua, HUANG Hao, LI Yijun, LIU Xiaolin, XIANG Jianhai. Molecular markers for identifying a new selected variety of Pacific white shrimp Litopenaeus vannamei[J]. Journal of Oceanology and Limnology, 2015, 33(1): 1-10

Molecular markers for identifying a new selected variety of Pacific white shrimp Litopenaeus vannamei

YU Yang1,2, ZHANG Xiaojun1, LIU Jingwen1,2, LI Fuhua1, HUANG Hao3, LI Yijun3, LIU Xiaolin4, XIANG Jianhai1
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Hainan Nanjiang Marine Biotechnique Company Limited, Sanya 572536, China;
4 Northwest Agriculture and Forestry University, Yangling 712100, China
Abstract:
Selective breeding of the Pacific white shrimp Litopenaeus vannamei during the last decade has produced new varieties exhibiting high growth rates and disease resistance. However, the identification of new varieties of shrimps from their phenotypic characters is difficult. This study introduces a new approach for identifying varieties of shrimps using molecular markers of microsatellites and mitochondrial control region sequences. The method was employed to identify a new selected variety, Kehai No. 1 (KH-1), from three representative stocks (control group): Zhengda; Tongwei; and a stock collected from Fujian Province, which is now cultured in mainland China. By pooled genotyping of KH-1 and the control group, five microsatellites showing differences between KH-1 and the control group were screened out. Individual genotyping data confirmed the results from pooled genotyping. The genotyping data for the five microsatellites were applied to the assignment analysis of the KH-1 group and the control group using the partial Bayesian assignment method in GENECLASS2. By sequencing the mitochondrial control regions of individuals from the KH-1 and control group, four haplotypes were observed in the KH-1 group, whereas 14 haplotypes were obtained in the control group. By combining the microsatellite assignment analysis with mitochondrial control region analysis, the average accuracy of identification of individuals in the KH-1 group and control group reached 89%. The five selected microsatellite loci and mitochondrial control region sequences were highly polymorphic and could be used to distinguish new selected varieties of L. vannamei from other populations cultured in China.
Key words:    molecular identification|Litopenaeus vannamei|new variety|mitochondrial control region|microsatellite   
Received: 2013-08-20   Revised: 2014-05-04
Tools
PDF (545 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YU Yang
Articles by ZHANG Xiaojun
Articles by LIU Jingwen
Articles by LI Fuhua
Articles by HUANG Hao
Articles by LI Yijun
Articles by LIU Xiaolin
Articles by XIANG Jianhai
References:
Alcivar-Warren A, Meehan-Meola D, Park S W, Xu Z, Delaney M, Zuniga G. 2007. ShrimpMap: a low-density, microsatellite-based linkage map of the pacific whiteleg shrimp, Litopenaeus vannamei: identification of sexlinked markers in linkage group 4. J. Shellfish. Res., 26 (4): 1 259-1 277.
Argue B J, Arce S M, Lotz J M, Moss S M. 2002. Selective breeding of Pacific white shrimp (Litopenaeus vannamei) for growth and resistance to Taura Syndrome Virus. Aquaculture, 204 (3-4): 447-460.
Baudouin L. 2004. Analytical bayesian approach for assigning individuals to populations. Journal of Heredity, 95 (3): 217-224.
Bredemeijer G M M, Cooke R J, Ganal M W, Peeters R, Isaac P, Noordijk Y, Rendell S, Jackson J, Roder M S, Wendehake K, Dijcks M, Amelaine M, Wickaert V, Bertrand L, Vosman B. 2002. Construction and testing of a microsatellite database containing more than 500 tomato varieties. Theor. Appl. Genet., 105 (6-7): 1 019-1 026.
Carlsson J, McDowell J R, Diaz-Jaimes P, Carlsson J E L, Boles S B, Gold J R, Graves J E. 2004. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Molecular Ecology, 13 (11): 3 345-3 356.
Chu K H, Li C P, Tam Y K, Lavery S. 2003. Application of mitochondrial control region in population genetic studies of the shrimp Penaeus. Mol. Ecol. Notes, 3 (1): 120-122.
Collins H E, Li H Z, Inda S E, Anderson J, Laiho K, Tuomilehto J, Seldin M F. 2000. A simple and accurate method for determination of microsatellite total allele content differences between DNA pools. Hum. Genet., 106 (2): 218-226.
Cryer N C, Butler D R, Wilkinson M J. 2005. High throughput, high resolution selection of polymorphic microsatellite loci for multiplex analysis. Plant Methods, 1. Esselink G D, Smulders M J M, Vosman B. 2003. Identification of cut rose (Rosa hybrida) and rootstock varieties using robust sequence tagged microsatellite site markers. Theor. Appl. Genet., 106 (2): 277-286.
Gitterle T, Rye M, Salte D, Cock J, Johansen H, Lozano C, Suarez J A, Qjerde B. 2005. Genetic (co)variation in harvest body weight and survival in Penaeus (Litopenaeus) vannamei under standard commercial conditions. Aquaculture, 243 (1-4): 83-92.
Gjedrem T, Fimland E. 1995. Potential benefits from high health and genetically improved shrimp stocks. Swimming Through Troubled Water. p.60-65.
Huang Y C, Yin Z X, Weng S P, He J G, Li S D. 2012. Selective breeding and preliminary commercial performance of Penaeus vannamei for resistance to white spot syndrome virus (WSSV). Aquaculture, 364: 111-117.
Huelsenbeck J P, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17: 754-755.
Kause A, Ritola O, Paananen T, Wahlroos H, Mantysaari E A. 2005. Genetic trends in growth, sexual maturity and skeletal deformations, and rate of inbreeding in a breeding programme for rainbow trout (Oncorhynchus mykiss). Aquaculture, 247 (1-4): 177-187.
Kimura T, Shi Y Z, Shoda M, Kotobuki K, Matsuta N, Hayashi T, Ban Y, Yamamoto T. 2002. Identification of Asian pear varieties by SSR analysis. Breeding Science, 52 (2): 115-121.
Kirov G, Williams N, Sham P, Craddock N, Owen M J. 2000. Pooled genotyping of microsatellite markers in parentoffspring trios. Genome Res., 10 (1): 105-115.
Liu Z J, Cordes J F. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 238 (1-4): 1-37.
Lu X, Wang H X, Liu B Z, Xiang J H. 2011. An effective method for parentage determination of the clam (Meretrix meretrix) based on SSR and COI markers. Aquaculture, 318 (1-2): 223-228.
Mccusker M R, Paterson I G, Bentzen P. 2008. Microsatellite markers discriminate three species of North Atlantic wolffishes (Anarhichas spp.). J. Fish. Biol., 72 (2): 375-385.
Meehan D, Xu Z, Zuniga G, Alcivar-Warren A. 2003. High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei [Crustacea: Decapoda]. Mar. Biotechnol., 5 (4): 311-330.
Oetting W S, Lee H K, Flanders D J, Wiesner G L, Sellers T A, King R A. 1995. Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics, 30 (3): 450-458.
O'Reilly P, Wright J M. 1995. The evolving technology of DNA fingerprinting and its application to fisheries and aquaculture. J. Fish. Biol., 47: 29-55.
Paetkau D, Slade R, Burden M, Estoup A. 2004. Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Molecular Ecology, 13 (1): 55-65.
Pearse D, Wooninck L, Dean C, Garza J C. 2007. Identification of northeastern Pacific rockfish using multilocus nuclear DNA genotypes. Transactions of the American Fisheries Society, 136 (1): 272-280.
Piry S, Alapetite A, Cornuet J M, Paetkau D, Baudouin L, Estoup A. 2004. GENECLASS2: a software for genetic assignment and first-generation migrant detection. Journal of Heredity, 95 (6): 536-539.
Rannala B, Mountain J L. 1997. Detecting immigration by using multilocus genotypes. P. Natl. Acad. Sci. USA, 94 (17): 9 197-9 201. Rasmussen R S, Morrissey M T. 2009. Application of DNAbased methods to identify fish and seafood substitution on the commercial market. Compr. Rev. Food. Sci. F., 8 (2): 118-154.
Renshaw M A, Saillant E, Broughton R E, Gold J R. 2006. Application of hypervariable genetic markers to forensic identification of ‘wild' from hatchery-raised red drum, Sciaenops ocellatus. Forensic Science International, 156 (1): 9-15.
Rozas J, Sanchez-DelBarrio J C, Messeguer X, Rozas R. 2003. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 19 (18): 2 496-2 497.
Santos C A, Rossini B C, Marques C G, Galetti P M, Freitas P D. 2012. Characterization and genomic annotation of polymorphic EST-SSR loci in Litopenaeus vannamei shrimp. Aquaculture Research, 43 (10): 1 567-1 570.
Sellars M J, Arce S M, Hertzler P L. 2012. Triploidy induction in the Pacific white shrimp Litopenaeus vannamei: an assessment of induction agents and parameters, embryo viability, and early larval survival. Mar. Biotechnol., 14 (6): 740-751.
Shaw S H, Carrasquillo M M, Kashuk C, Puffenberger E G, Chakravarti A. 1998. Allele frequency distributions in pooled DNA samples: applications to mapping complex disease genes. Genome. Res., 8 (2): 111-123.
Simmons M, Mickett K, Kucuktas H, Li P, Dunham R, Liu Z J. 2006. Comparison of domestic and wild channel catfish (Ictalurus punctatus) populations provides no evidence for genetic impact. Aquaculture, 252 (2-4): 133-146.
Smith C T, Grant W S, Seeb L W. 2005. A rapid, highthroughput technique for detecting Tanner crabs Chionoecetes bairdi illegally taken in Alaska's snow crab fishery. Transactions of the American Fisheries Society, 134 (3): 620-623.
Sorenson L, McDowell J R, Knott T, Graves J E. 2013. Assignment test method using hypervariable markers for blue marlin (Makaira nigricans) stock identification. Conservation Genetics Resources, 5 (1): 293-297.
Storset A, Strand C, Wetten M, Sissel K, Rarnstad A. 2007. Response to selection for resistance against infectious pancreatic necrosis in Atlantic salmon (Salmo salar L.). Aquaculture, 272: S62-S68. Swofford D L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony and Other Methods, Version 4.0b10. Sinauer Associates, MA (2002). Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28 (10): 2 731-2 739.
Valles-Jimenez R, Gaffney P M, Perez-Enriquez R. 2006. RFLP analysis of the mtDNA control region in white shrimp (Litopenaeus vannamei) populations from the eastern Pacific. Marine Biology, 148 (4): 867-873.
Vaseeharan B, Rajakamaran P, Jayaseelan D, Anita Yeshvadha V. 2013. Molecular markers and their application in genetic diversity of Penaeid shrimps. Aquacult. Int., 21 (2): 219-241.
Wright J M, Bentzen P. 1994. Microsatellites—genetic-markers for the future. Rev. Fish. Biol. Fisher., 4 (3): 384-388.
You E M, Chiu T S, Liu K F, Tassanakajon A, Klinbunga S, Triwitayakorn K, de la Pena L D, Li Y, Yu H T. 2008. Microsatellite and mitochondrial haplotype diversity reveals population differentiation in the tiger shrimp (Penaeus monodon) in the Indo-Pacific region. Anim. Genet., 39 (3): 267-277.
Zhang L S, Yang C J, Zhang Y, Li L, Zhang X M, Zhang Q L, Xiang J H. 2007. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex-linked microsatellite markers and high recombination rates. Genetica, 131 (1): 37-49.
Copyright © Haiyang Xuebao