Cite this paper:
Tongyu WANG, Shuwen ZHANG, Fajin CHEN, Yonggui MA, Chen JIANG, Jie YU. Influence of sequential tropical cyclones on phytoplankton blooms in the northwestern South China Sea[J]. Journal of Oceanology and Limnology, 2021, 39(1): 14-25

Influence of sequential tropical cyclones on phytoplankton blooms in the northwestern South China Sea

Tongyu WANG1, Shuwen ZHANG2,3, Fajin CHEN1, Yonggui MA1, Chen JIANG1, Jie YU1
1 College of Oceanography and Meteorology, Guangdong Ocean University, Zhanjiang 524000, China;
2 Institute of Marine Science, Shantou University, Shantou 515063, China;
3 Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
Upper ocean responses to the passage of sequential tropical cyclones over the northwestern South China Sea (SCS) in 2011 were investigated using satellite remote sensing data, Argo reanalysis data, and an array of mooring data. We found that the sea surface low temperature region lasted for more than 38 days and two phytoplankton blooms occurred after the passage of sequential tropical cyclones. The upper ocean cooling reached 2-5℃ with a right-side bias was observed along the typhoon track to about 200 km. The maintenance of low temperature region and the two phytoplankton blooms were mainly driven by upwelling and near-inertial turbulence mixing induced by the sequential tropical cyclones. The first phytoplankton bloom appeared on the 7th day after the passage of the three tropical cyclones, and the chlorophyll-a (chl-a) concentration increased by 226%, which may be mainly driven by typhoons induced upwelling. The second phytoplankton bloom occurred on the 30th day, the chl-a concentration increased by 290%. Further analysis suggested that only the typhoons with similar characteristics as Nesat and Nalgae can induce strong near-inertial oscillation (NIO). Strong turbulent mixing associated with the near-inertial baroclinic shear instability lasted for 26 days. The measured mean eddy diffusivity in the upper ocean was above 10-4 m2/s after typhoon Nesat. Enhancement of the turbulent mixing in the upper ocean helped to transport nutrient-rich cold waters from the deep layer to the euphotic layer, and is a major mechanism for the long-term maintenance of low temperature region as well as the second phytoplankton bloom.
Key words:    sequential tropical cyclones|two phytoplankton blooms|tropical cyclones induced upwelling|turbulence mixing by the near-inertial baroclinic shear instability   
Received: 2019-10-17   Revised: 2019-12-10
PDF (8548 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Tongyu WANG
Articles by Shuwen ZHANG
Articles by Fajin CHEN
Articles by Yonggui MA
Articles by Chen JIANG
Articles by Jie YU
Babin S M, Carton J A, Dickey T D, Wiggert J D. 2004.Satellite evidence of hurricane-induced phytoplankton blooms in an oceanic desert. J. Geophys. Res. Oceans, 109(C3):C03043,
Chen D K, Lei X T, Wang W, Wang G H, Han G J, Zhou L. 2013. Upper ocean response and feedback mechanisms to typhoon. Adv. Earth Sci., 28(10):1 077-1 086, (in Chinese with English abstract)
Chiang T L, Wu C R, Oey L Y. 2011. Typhoon Kai-Tak:an ocean's perfect storm. J. Phys. Oceanogr., 41(1):221-233,
D'Asaro E A, Eriksen C C, Levine M D, Paulson C A, Niiler P, Van Meurs P. 1995. Upper-ocean inertial currents forced by a strong storm. Part I:data and comparisons with linear theory. J. Phys. Oceanogr., 25(11):2 909-2 936,<2909:UOICFB>2.0.CO;2.
D'Asaro E A, Sanford T B, Niiler P P, Terrill E J. 2007. Cold wake of hurricane Frances. Geophys. Res. Lett., 34(15):L15609,
D'Asaro E A. 2003. The ocean boundary layer below Hurricane Dennis. J. Phys. Oceanogr., 33(3):561-579,<0561:TOBLBH>2.0.CO;2.
Dickey T, Frye D, McNeil J, Manov D, Nelson N, Sigurdson D, Jannasch H, Siegel D, Michaels T, Johnson R. 1998.Upper-ocean temperature response to Hurricane Felix as measured by the Bermuda testbed mooring. Mon. Wea.Rev., 126(5):1 195-1 201,<1195:UOTRTH>2.0.CO;2.
Guan S D, Zhao W, Huthnance J, Tian J W, Wang J H. 2014.Observed upper ocean response to typhoon Megi (2010)in the Northern South China Sea. J. Geophys. Res.Oceans, 119(5):3 134-3 157,
Hart R E, Maue R N, Watson M C 2007. Estimating local memory of tropical cyclones through MPI anomaly evolution. Mon. Wea. Rev., 135(12):3 990-4 005,
Jacob S D, Shay L K, Mariano A J, Black P G. 2000. The 3D oceanic mixed layer response to Hurricane Gilbert. J.Phys. Oceanogr., 30(6):1 407-1 429,<1407:TOMLRT>2.0.CO;2.
Kunze E. 1985. Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr., 15(5):544-565,<0544:NIWPIG>2.0.CO;2.
Li H, Xu F, Zhou W, Wang D, Wright J S, Liu Z, Lin Y. 2017.Development of a global gridded Argo data set with Barnes successive corrections. J. Geophys. Res. Oceans, 122,
Lin I I, Black P, Price J F, Yang C Y, Chen S S, Lien C C, Harr P, Chi N H, Wu C C, D'Asaro E A. 2013. An ocean coupling potential intensity index for tropical cyclones.Geophys. Res. Lett., 40(9):1 878-1 882,
Lin I I, Wu C C, Pun I F, Ko D S. 2008b. Upper-ocean thermal structure and the western North Pacific category 5 typhoons. Part I:ocean features and the category 5 typhoons' intensification. Mon. Wea. Rev., 136(9):3 288-3 306,
Lin I, Liu W T, Wu C C, Wong G T, Hu C M, Chen Z Q, Liang W D, Yang Y, Liu K K. 2003. New evidence for enhanced ocean primary production triggered by tropical cyclone.Geophys. Res. Lett., 30(13):1 718,
Liu L L, Wang W, Huang R X. 2008. The mechanical energy input to the ocean induced by tropical cyclones. J. Phys.Oceanogr., 38(6):1 253-1 266,
MacKinnon J A, Gregg M C. 2003. Mixing on the late-summer New England shelf-Solibores, shear, and stratification.J.Phys. Oceanogr., 33(7):1 476-1 492,<1476:MOTLNE>2.0.CO;2.
Maritorena S, d'Andon O H F, Mangin A, Siegel D A. 2010.Merged satellite ocean color data products using a biooptical model:characteristics, benefits and issues. Remote Sens. Environ., 114(8):1 791-1 804,
Osborn T R. 1980. Estimates of the local rate of vertical diffusion from dissipation measurements. J. Phys.Oceanogr., 10(1):83-89,<0083:EOTLRO>2.0.CO;2.
Powell M D, Vickery P J, Reinhold T A. 2003. Reduced drag coefficient for high wind speeds in tropical cyclones.Nature, 422(6929):279-283.
Price J F, Sanford T B, Forristall G Z. 1994. Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24(2):233-260,<0233:FSRTAM>2.0.CO;2.
Price J F. 1981. Upper ocean response to a hurricane. J. Phys.Oceanogr., 11(2):153-175,<0153:UORTAH>2.0.CO;2.
Price J F. 2009. Metrics of hurricane-ocean interaction:vertically-integrated or vertically-averaged ocean temperature? Ocean Sci., 5(3):351-368.
Shang S L, Li L, Sun F Q, Wu J Y, Hu C M, Chen D W, Ning X R, Xing Y, Zhang C Y, Shang S P. 2008. Changes of temperature and bio-optical properties in the South China Sea in response to Typhoon Lingling, 2001.Geophys. Res. Lett., 35(10):L10602,
Shi W, Wang M H. 2007. Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico.Geophys. Res. Lett., 34(11):L11607.
Soloviev A V, Lukas R, Donelan M A, Haus B K, Ginis I. 2014.The air-sea interface and surface stress under tropical cyclones. Sci. Rep., 4(1):5 306,
Sriver R L, Huber M. 2007. Observational evidence for an ocean heat pump induced by tropical cyclones. Nature, 447(7144):577-580,
Subrahmanyam B, Rao K H, Srinivasa Rao N, Murty V S N, Sharp R J. 2002. Influence of a tropical cyclone on chlorophyll-a concentration in the Arabian Sea. Geophys.Res. Lett., 29(22):2 065,
Sun L, Yang Y J, Xian T, Lu Z M, Fu Y F. 2010. Strong enhancement of chlorophyll a concentration by a weak typhoon. Mar. Ecol. Prog. Ser., 404:39-50,
Timmermann A, An S I, Krebs U, Goosse H. 2005. ENSO suppression due to weakening of the North Atlantic thermohaline circulation. J. Clim., 18(16):3 122-3 139,
Wentz F J, Gentemann C, Smith D, Chelton D. 2000. Satellite measurements of sea surface temperature through clouds.Science, 288(5467):847-850,
Wentz F J, Scott J, Hoffman R, Leidner M, Atlas R, Ardizzone J. 2015. Remote Sensing Systems Cross-Calibrated MultiPlatform (CCMP) 6-hourly ocean vector wind analysis product on 0.25° grid, version 2.0. Remote Sensing Systems, Accessed on April 15, 2016.
Wu R H, Li C Y. 2018. Upper ocean response to the passage of two sequential typhoons. Deep Sea Res. Part I Oceanogr.Res. Papers, 132:68-79,
Zhang H, Chen D, Zhou L, Liu X H, Ding T, Zhou B F. 2016.Upper ocean response to typhoon Kalmaegi (2014). J.Geophys. Res. Oceans, 121(8):6 520-6 535,
Zhang S W, Xie L L, Hou Y J, Zhao H, Qi Y Q, Yi X F. 2014.Tropical storm-induced turbulent mixing and chlorophylla enhancement in the continental shelf southeast of Hainan Island. J. Mar. Syst., 129:405-414,
Zhao H, Han G Q, Zhang S W, Wang D X. 2013. Two phytoplankton blooms near Luzon Strait generated by lingering Typhoon Parma. J. Geophys. Res. Biogeosci., 118(2):412-421,
Zhao H, Pan J Y, Han G Q, Devlin A T, Zhang S W, Hou Y J. 2017. Effect of a fast-moving tropical storm Washi on phytoplankton in the northwestern South China Sea. J.Geophys. Res. Oceans, 122(4):3 404-3 416,
Zhao H, Tang D L, Wang Y Q. 2008. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Mar. Ecol. Prog. Ser., 365:57-65,
Zheng G M, Tang D L. 2007. Offshore and nearshore chlorophyll increases induced by typhoon winds and subsequent terrestrial rainwater runoff. Mar. Ecol. Prog.Ser., 333:61-74,
Copyright © Haiyang Xuebao