Cite this paper:
Kyleyoung LOW, Layching CHAI, Choonweng LEE, Gan ZHANG, Ruijie ZHANG, Vaezzadeh VAHAB, Chuiwei BONG. Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak[J]. Journal of Oceanology and Limnology, 2021, 39(1): 122-134

Prevalence and risk assessment of antibiotics in riverine estuarine waters of Larut and Sangga Besar River, Perak

Kyleyoung LOW1,2, Layching CHAI3, Choonweng LEE3, Gan ZHANG4, Ruijie ZHANG5, Vaezzadeh VAHAB1,4, Chuiwei BONG2,3
1 Institute of Ocean and Earth Sciences (IOES), University of Malaya, Kuala Lumpur 50603, Malaysia;
2 Institute of Graduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
3 Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
4 Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China;
5 School of Marine Sciences, Guangxi University, Nanning 530004, China
Antibiotics released into the environment through anthropogenic activities exert selective pressure, driving bacteria towards increasing antimicrobial resistance. The prevalence of antibiotics and the ecological risks posed in the riverine estuarine of Larut River and Sangga Besar River, which included wastewater effluents from hospital, zoo, and poultry slaughterhouse sources were investigated. Solid phase extraction (SPE) followed by high-performance liquid chromatography tandem mass chromatography (HPLC-MS/MS) were used to extract and quantify the antibiotic residues from 22 antibiotics belonging to six major antibiotic classes (sulfonamide, macrolide, fluoroquinolone, phenicol, trimethoprim, and tetracycline). Sixteen antibiotic residues were detected with concentrations ranging from limit of detection (LOD) to 1 262.3 ng/L. Fluoroquinolones and macrolides were the most frequently detected compounds. Erythromycin, clarithromycin, and ofloxacin detected in hospital and zoo effluents posed a high risk to algae while tetracycline had low to medium ecological risks toward all the relevant organisms from aquatic environments (algae, invertebrate Daphnia magna, and fish).
Key words:    antibiotic residues|prevalence|ecological risk|anthropogenic pollution|riverine|estuarine   
Received: 2019-09-24   Revised: 2019-12-18
PDF (2344 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by Kyleyoung LOW
Articles by Layching CHAI
Articles by Choonweng LEE
Articles by Gan ZHANG
Articles by Ruijie ZHANG
Articles by Vaezzadeh VAHAB
Articles by Chuiwei BONG
Ågerstrand M, Berg C, Björlenius B, Breitholtz M, Brunström B, Fick J, Gunnarsson L, Larsson D G J, Sumpter J P, Tysklind M, Rudén C. 2015. Improving environmental risk assessment of human pharmaceuticals. Environmental Science & Technology, 49(9):5 336-5 345,
Ahmad B, Hasan Z A. 2011. Flood map of Tupai River using combined 1D and 2D modeling. In:Proceedings of the 3rd International Conference on Managing Rivers in the 21st Century:Sustainable Solutions for Global Crisis of Flooding, Pollution and Water Scarcity. Penang, Malaysia.p.491-496.
Allen H K, Donato J, Wang H H, Cloud-Hansen K A, Davies J, Handelsman J. 2010. Call of the wild:antibiotic resistance genes in natural environments. Nature Reviews Microbiology, 8(4):251-259,
Al-Qaim F F, Mussa Z H, Yuzir A, Tahrim N A, Hashim N, Azman S. 2018. Transportation of different therapeutic classes of pharmaceuticals to the surface water, sewage treatment plant, and hospital samples, Malaysia. Water,10(7):916,
Ando T, Nagase H, Eguchi K, Hirooka T, Nakamura T, Miyamoto K, Hirata K. 2007. A novel method using cyanobacteria for ecotoxicity test of veterinary antimicrobial agents.Environmental Toxicology and Chemistry, 26(4):601-606.
Annual Fisheries of Perak. 2000. Annual Fisheries Statistics 2000-2004. p.24-40.
Arikan O A, Rice C, Codling E. 2008. Occurrence of antibiotics and hormones in a major agricultural watershed.Desalination, 226(1-3):121-133,
Baquero F, Martínez J L, Cantón R. 2008. Antibiotics and antibiotic resistance in water environments. Current Opinion in Biotechnology, 19(3):260-265,
Batt A L, Bruce I B, Aga D S. 2006. Evaluating the vulnerability of surface waters to antibiotic contamination from varying wastewater treatment plant discharges. Environmental Pollution, 142(2):295-302,
Bengtsson-Palme J, Larsson D G J. 2016. Concentrations of antibiotics predicted to select for resistant bacteria:proposed limits for environmental regulation. Environment International, 86:140-149,
Berendonk T U, Manaia C M, Merlin C, Fatta-Kassinos D, Cytryn E, Walsh F, Bürgmann H, Sørum H, Norström M, Pons M N, Kreuzinger N, Huovinen P, Stefani S, Schwartz T, Kisand V, Baquero F, Martinez J L. 2015. Tackling antibiotic resistance:the environmental framework.Nature Reviews Microbiology, 13(5):310-317,
Cabello F C, Godfrey H P, Buschmann A H, Dölz H J. 2016.Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance.The Lancet Infectious Diseases, 16(7):E127-E133,
Cabello F C. 2006. Heavy use of prophylactic antibiotics in aquaculture:a growing problem for human and animal health and for the environment. Environmental Microbiology, 8(7):1 137-1 144,
Chang X S, Meyer M T, Liu X Y, Zhao Q, Chen H, Chen J A, Qiu Z Q, Yang L, Cao J, Shu W Q. 2010. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China.Environmental Pollution, 158(5):1 444-1 450,
Chen Y H, Chen H J, Zhang L, Jiang Y, Gin K Y H, He Y L. 2018. Occurrence, distribution, and risk assessment of antibiotics in a subtropical river-reservoir system. Water, 10(2):104,
Davis J G, Truman C C, Kim S C, Ascough Ⅱ J C, Carlson K. 2006. Antibiotic transport via runoff and soil loss. Journal of Environmental Quality, 35(6):2 250-2 260,
Deng W J, Li N, Zheng H L, Lin H Y. 2016. Occurrence and risk assessment of antibiotics in river water in Hong Kong. Ecotoxicology and Environmental Safety, 125:121-127,
Department of Statistics Malaysia. 2011. Population Distribution and Basic Demographic Characteristics.Department of Statistics Malaysia. p.67-68.
Divya S P, Hatha A A M. 2019. Screening of tropical estuarine water in south-west coast of India reveals emergence of ARGs-harboring hypervirulent Escherichia coli of global significance. International Journal of Hygiene and Environmental Health, 222(2):235-248,
Diwan V, Tamhankar A J, Khandal R K, Sen S, Aggarwal M, Marothi Y, Iyer R V, Sundblad-Tonderski K, StålsbyLundborg C. 2010. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health, 10:414,
Du J, Zhao H X, Liu S S, Xie H J, Wang Y, Chen J W. 2017.Antibiotics in the coastal water of the South Yellow Sea in China:occurrence, distribution and ecological risks.Science of the Total Environment, 595:521-527,
European Commission Joint Research Centre. 2003. Technical Guidance Document on Risk Assessment. Part Ⅱ. EUR 20418 EN/2. European Commission Joint Research Centre.
Forestry Department of Perak. 2010. The Management of Matang Mangrove Forest, Perak, Malaysia. Accessed on 2018-12-13.
García-Galán M J, Díaz-Cruz M S, Barceló D. 2011.Occurrence of sulfonamide residues along the Ebro river basin:Removal in wastewater treatment plants and environmental impact assessment. Environment International, 37(2):462-473,
Garcillán-Barcia M P, Alvarado A, de la Cruz F. 2011.Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiology Reviews, 35(5):936-956,
Gauthier H, Yargeau V, Cooper D G. 2010. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism. Science of the Total Environment, 408(7):1 701-1 706,
Ghaderpour A, Ho W S, Chew L L, Bong C W, Chong V C, Thong K L, Chai L C. 2015. Diverse and abundant multidrug resistant E. coli in Matang mangrove estuaries, Malaysia. Frontiers in Microbiology, 6:977,
Göbel A, Thomsen A, McArdell C S, Joss A, Giger W. 2005.Occurrence and sorption behavior of sulfonamides, macrolides, and trimethoprim in activated sludge treatment. Environmental Science & Technology, 39(11):3 981-3 989,
Grenni P, Ancona V, Caracciolo A B. 2018. Ecological effects of antibiotics on natural ecosystems:a review.Microchemical Journal, 136:25-39,
Halling-Sørensen B. 2000. Algal toxicity of antibacterial agents used in intensive farming. Chemosphere, 40(7):731-739,
Hammer Ø, Harper D A T, Ryan P D. 2001. PAST:paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1):1-9.
Hassali M A A, Yann H R, Verma A K, Hussain R, Sivaraman S. 2018. Antibiotic Use in Food Animals:Malaysia Overview. Discipline of Social & Administrative Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia. 29p.
Houtman C J, van Oostveen A M, Brouwer A, Lamoree M H, Legler J. 2004. Identification of estrogenic compounds in fish bile using bioassay-directed fractionation.Environmental Science & Technology, 38(23):6 415-6 423,
Humeniuk C, Arlet G, Gautier V, Grimont P, Labia R, Philippon A. 2002. β-lactamases of Kluyvera ascorbata, probable progenitors of some plasmid-encoded CTX-M types.Antimicrobial Agents and Chemotherapy, 46(9):3 045-3 049,
Iglesias A, Nebot C, Miranda J M, Vázquez B I, Abuín C M F, Cepeda A. 2013. Determination of the presence of three antimicrobials in surface water collected from urban and rural areas. Antibiotics, 2(1):46-57,
Jank L, Hoff R B, da Costa F J, Pizzolato T M. 2014.Simultaneous determination of eight antibiotics from distinct classes in surface and wastewater samples by solid-phase extraction and high-performance liquid chromatography-electrospray ionisation mass spectrometry. International Journal of Environmental Analytical Chemistry, 94(10):1 013-1 037,
Jiang L, Hu X L, Yin D Q, Zhang H C, Yu Z Y. 2011.Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China.Chemosphere, 82(6):822-828,
Kasprzyk-Hordern B, Dinsdale R M, Guwy A J. 2008. The occurrence of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs in surface water in South Wales, UK. Water Research, 42(13):3 498-3 518,
Kemper N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 8(1):1-13,
Kim S C, Carlson K. 2006. Occurrence of ionophore antibiotics in water and sediments of a mixed-landscape watershed.Water Research, 40(13):2 549-2 560,
Kimosop S J, Getenga Z M, Okello V A, Cheruiyot J K. 2016.Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons, and rivers within Lake Victoria Basin, Kenya.Environmental Monitoring and Assessment, 188(9):532,
Lee Y J, Lee S E, Lee D S, Kim Y H. 2008. Risk assessment of human antibiotics in Korean aquatic environment.Environmental Toxicology and Pharmacology, 26(2):216-221,
Li S, Shi W Z, Liu W, Li H M, Zhang W, Hu J R, Ke Y C, Sun W L, Ni J R. 2018. A duodecennial national synthesis of antibiotics in China's major rivers and seas (2005-2016).Science of the Total Environment, 615:906-917,
Lu Z H, Na G S, Gao H, Wang L J, Bao C G, Yao Z W. 2015.Fate of sulfonamide resistance genes in estuary environment and effect of anthropogenic activities.Science of the Total Environment, 527-528:429-438,
Lundborg C S, Tamhankar A J. 2017. Antibiotic residues in the environment of South East Asia. BMJ, 358:j2440,
Luo Y, Xu L, Rysz M, Wang Y Q, Zhang H, Alvarez P J J. 2011. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China. Environmental Science & Technology, 45(5):1 827-1 833,
Lye Y L, Bong C W, Lee C W, Zhang R J, Zhang G, Suzuki S, Chai L C. 2019. Anthropogenic impacts on sulfonamide residues and sulfonamide resistant bacteria and genes in Larut and Sangga Besar River, Perak. Science of the Total Environment, 688:1 335-1 347,
Magdaleno A, Saenz M E, Juárez A B, Moretton J. 2015.Effects of six antibiotics and their binary mixtures on growth of Pseudokirchneriella subcapitata. Ecotoxicology and Environmental Safety, 113:72-78,
Managaki S, Murata A, Takada H, Tuyen B C, Chiem N H. 2007. Distribution of macrolides, sulfonamides, and trimethoprim in tropical waters:ubiquitous occurrence of veterinary antibiotics in the Mekong Delta. Environmental Science & Technology, 41(23):8 004-8 010,
Marni S, Malintan N T, Faridah I, Mustafa A M. 2010.Chloramphenicol in Malaysia waste water and its residues in animal husbandaries products. Health and the Environment Journal, 1(1), 41-45.
Martinez J L. 2009. Environmental pollution by antibiotics and by antibiotic resistance determinants. Environmental Pollution, 157(11):2 893-2 902,
Marzuki Z. 2017. Use of antimicrobial agents in veterinary medicine in Malaysia. 2nd OIE Information Seminar for Praticing Veterinatians:combating AMR. Kuala Lumpur, Malaysia. Accessed on 2019-08-29.
McArdell C S, Molnar E, Suter M J F, Giger W. 2003. Occurrence and Fate of Macrolide Antibiotics in Wastewater Treatment Plants and in the Glatt Valley Watershed, Switzerland.Environmental Science & Technology, 37(24):5 479-5 486,
McElligott E M, Sommardahl C S, Cox S K. 2017.Pharmacokinetics of chloramphenicol base after oral administration in adult horses. Journal of the American Veterinary Medical Association, 251(1):90-94,
Miao X S, Bishay F, Chen M, Metcalfe C D. 2004. Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science & Technology, 38(13):3 533-3 541,
Michalova E, Novotna P, Schlegelova J. 2004. Tetracyclines in veterinary medicine and bacterial resistance to them.Veterinarni Medicina, 49(3):79-100,
Ministry of Health Malaysia. 2014. Food Act 1983 Food(Amendment) (No. 3) Regulations 2014. Ministry of Health, Malaysia. 45p.
Ministry of Health Malaysia. 2017a. Malaysian Statistics on Medicines 2011-2014. Ministry of Health Malaysia. p.67-219.
Ministry of Health Malaysia. 2017b. Malaysian Action Plan on Antimicrobial Resistance (MyAP-AMR) 2017-2021.
Ministry of Health, Malaysia, Ministry of Agriculture & Agro-Based Industry Malaysia, Malaysia. 51p.
Mohamad I, Johan K B, Hashim H Z, Othman N N. 2014.Otitis externa complicated with chloramphenicol ear drops-induced perichondritis. Malaysian Family Physician, 9(1):28-29.
Muda A, Ahmad Z M A, Lim K L. 2005. Sustainable management and conservation of the matang mangroves.Forestry Department Peninsular Malaysia, 39-52.
Mutiyar P K, Mittal A K. 2014. Occurrences and fate of selected human antibiotics in influents and effluents of sewage treatment plant and effluent-receiving river Yamuna in Delhi (India). Environmental Monitoring and Assessment, 186(1):541-557,
O'Neill J. 2016. Tackling Drug-Resistant Infections Globally:Final Report and Recommendations. The Review on Antimicrobial Resistance, London. 1-76.
Olarinmoye O, Bakare A, Ugwumba O, Hein A. 2016.Quantification of pharmaceutical residues in wastewater impacted surface waters and sewage sludge from Lagos, Nigeria. Journal of Environmental Chemistry and Ecotoxicology, 8(3):14-24,
Ory J, Bricheux G, Togola A, Bonnet J L, Donnadieu-Bernard F, Nakusi L, Forestier C, Traore O. 2016. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent. Environmental Pollution, 214:635-645,
Osorio V, Larrañaga A, Aceña J, Pérez S, Barceló D. 2016.Concentration and risk of pharmaceuticals in freshwater systems are related to the population density and the livestock units in Iberian Rivers. Science of the Total Environment, 540:267-277,
Partridge S R. 2011. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiology Reviews, 35(5):820-855,
Pérez Gaudio D S, Colello R, Fernández D, Mozo J, Martínez G, Fernández Paggi M B, Decundo J M, Romanelli A, Dieguez S, Etcheverría A, Padola N L, Soraci A L. 2018.Horizontal transference of antimicrobial resistance genes between a non pathogenic Escherichia coli and a pathogenic shiga toxin-producing E. coli strain. EC Veterinary Science, 3(2):293-299.
Pham T D M, Ziora Z M, Blaskovich M A T. 2019. Quinolone antibiotics. MedChemComm, 10(10):1 719-1 739,
Poirel L, Liard A, Rodriguez-Martinez J M, Nordmann P. 2005. Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. Journal of Antimicrobial Chemotherapy, 56(6):1 118-1 121,
Praveena S M, Shaifuddin S N M, Sukiman S, Nasir F A M, Hanafi Z, Kamarudin N, Ismail T H T, Aris A Z. 2018.Pharmaceuticals residues in selected tropical surface water bodies from Selangor (Malaysia):occurrence and potential risk assessments. Science of the Total Environment, 642:230-240,
Roberts J A, Norris R, Paterson D L, Martin J M. 2012.Therapeutic drug monitoring of antimicrobials. British Journal of Clinical Pharmacology, 73(1):27-36,
Rodriguez-Mozaz S, Chamorro S, Marti E, Huerta B, Gros M, Sànchez-Melsió A, Borrego C M, Barceló D, Balcázar J L. 2015. Occurrence of antibiotics and antibiotic resistance genes in hospital and urban wastewaters and their impact on the receiving river. Water Research, 69:234-242,
Sakai N, Yusof M R, Sapar M, Yoneda M, Mohd M A. 2016.Spatial analysis and source profiling of beta-agonists and sulfonamides in Langat River basin, Malaysia. Science of the Total Environment, 548-549:43-50,
Samuding K, Tadza M, Rahman A, Abustan I, Mejus L, Mostapa R. 2009. Integrated study on the distribution of contamination flow path at a waste disposal site in Malaysia.In:Yu X Y ed. Municipal and Industrial Waste Disposal.IntechOpen. p.55-70,
Shamsuddin S, Akkawi M E, Zaidi S T R, Ming L C. 2016.Antimicrobial drug use in primary healthcare clinics:a retrospective evaluation. International Journal of Infectious Diseases, 52:16-22,
Shimizu A, Takada H, Koike T, Takeshita A, Saha M, Rinawati, Nakada N, Murata A, Suzuki T, Suzuki S, Chiem N H, Tuyen B C, Viet P H, Siringan M A, Kwan C, Zakaria M P, Reungsang A. 2013. Ubiquitous occurrence of sulfonamides in tropical Asian waters. Science of the Total Environment, 452-453:108-115,
Siti F A, Kamarudin A, Nik N A N O. 2014. Malaysian Statistics on Medicines 2009 & 2010. Pharmaceutical Services Division and Clinical Research Centre, Malaysia. 206p.
Szekeres E, Baricz A, Chiriac C M, Farkas A, Opris O, Soran M L, Andrei A S, Rudi K, Balcázar J L, Dragos N, Coman C. 2017. Abundance of antibiotics, antibiotic resistance genes and bacterial community composition in wastewater effluents from different Romanian hospitals.Environmental Pollution, 225:304-315,
Tan G H, Low Q Q, Lim H C, Seah H K, Chan H K. 2017.Inappropriate antibiotic utilization:outpatient prescription review of a regional secondary hospital in Kedah, Malaysia.Journal of Pharmacy Practice and Community Medicine, 3(4):215-219,
Tappe W, Herbst M, Hofmann D, Koeppchen S, Kummer S, Thiele B, Groeneweg J. 2013. Degradation of sulfadiazine by Microbacterium lacus strain SDZm4, isolated from lysimeters previously manured with slurry from sulfadiazine-medicated pigs. Applied and Environmental Microbiology, 79(8):2 572-2 577,
Topp E, Chapman R, Devers-Lamrani M, Hartmann A, Marti R, Martin-Laurent F, Sabourin L, Scott A, Sumarah M. 2013. Accelerated biodegradation of veterinary antibiotics in agricultural soil following long-term exposure, and isolation of a sulfamethazine-degrading microbacterium sp. Journal of Environmental Quality, 42(1):173-178,
van Boeckel T P, Gandra S, Ashok A, Caudron Q, Grenfell B T, Levin S A, Laxminarayan R. 2014. Global antibiotic consumption 2000 to 2010:an analysis of national pharmaceutical sales data. The Lancet Infectious Diseases, 14(8):742-750,
Verlicchi P, Al Aukidy M, Galletti A, Petrovic M, Barceló D. 2012. Hospital effluent:investigation of the concentrations and distribution of pharmaceuticals and environmental risk assessment. Science of the Total Environment, 430:109-118,
Wang Q, Wang P L, Yang Q X. 2018. Occurrence and diversity of antibiotic resistance in untreated hospital wastewater.Science of the Total Environment, 621:990-999,
Xu J, Zhang Y, Zhou C B, Guo C S, Wang D M, Du P, Luo Y, Wan J, Meng W. 2014. Distribution, sources and composition of antibiotics in sediment, overlying water and pore water from Taihu Lake, China. Science of the Total Environment, 497-498:267-273,
Xu W H, Zhang G, Zou S C, Ling Z H, Wang G L, Yan W. 2009. A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environment Research, 81(3):248-254,
Xue B M, Zhang R J, Wang Y H, Liu X, Li J, Zhang G. 2013.Antibiotic contamination in a typical developing city in south China:occurrence and ecological risks in the Yongjiang River impacted by tributary discharge and anthropogenic activities. Ecotoxicology and Environmental Safety, 92:229-236,
Yang C C, Huang C L, Cheng T C, Lai H T. 2015. Inhibitory effect of salinity on the photocatalytic degradation of three sulfonamide antibiotics. International Biodeterioration & Biodegradation, 102:116-125,
Yao L L, Wang Y X, Tong L, Deng Y M, Li Y G, Gan Y Q, Guo W, Dong C J, Duan Y H, Zhao K. 2017. Occurrence and risk assessment of antibiotics in surface water and groundwater from different depths of aquifers:a case study at Jianghan Plain, central China. Ecotoxicology and Environmental Safety, 135:236-242,
Zarfel G, Lipp M, Gürtl E, Folli B, Baumert R, Kittinger C. 2017. Troubled water under the bridge:screening of River Mur water reveals dominance of CTX-M harboring Escherichia coli and for the first time an environmental VIM-1 producer in Austria. Science of the Total Environment, 593-594:399-405,
Zhang R J, Tang J H, Li J, Zheng Q, Liu D, Chen Y J, Zou Y D, Chen X X, Luo C L, Zhang G. 2013. Antibiotics in the offshore waters of the Bohai Sea and the Yellow Sea in China:occurrence, distribution and ecological risks.Environmental Pollution, 174:71-77,
Zhang R J, Zhang G, Zheng Q, Tang J H, Chen Y J, Xu W H, Zou Y D, Chen X X. 2012. Occurrence and risks of antibiotics in the Laizhou Bay, China:impacts of river discharge. Ecotoxicology and Environmental Safety, 80:208-215,
Copyright © Haiyang Xuebao