Cite this paper:
Xudong ZHOU, Xincheng JIANG, Shan GAO, Zhenjia WAN, Pengcheng GAO. Effects of oxytetracycline dihydrate and sulfamethoxazole on Microcystis aeruginosa and Chlamydomonas microsphaera[J]. Journal of Oceanology and Limnology, 2021, 39(1): 160-172

Effects of oxytetracycline dihydrate and sulfamethoxazole on Microcystis aeruginosa and Chlamydomonas microsphaera

Xudong ZHOU1, Xincheng JIANG2, Shan GAO1, Zhenjia WAN1, Pengcheng GAO1
1 College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China;
2 PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, China
Abstract:
The increasing use of pharmaceuticals has become a major environmental issue in China. The presence of antibiotics in water may have deleterious effects on non-target aquatic organisms such as microalgae. In this study, a cyanobacterium and an alga species in surface waters, Microcystis aeruginosa and Chlamydomonas microsphaera, were exposed to 0, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0, and 20.0 mg/L of oxytetracycline dihydrate (OXY) and sulfamethoxazole (SMZ) for 96 h to determine the effects of these antibiotics on the growth and surface morphology. Moreover, the photosynthetic activity and the contents of superoxide dismutase (SOD), malondialdehyde (MDA), and protein were measured to examine the biochemical characteristics of M. aeruginosa and C. microsphaera under OXY and SMZ stress. The effects of both antibiotics on the growth of both species were concentration-dependent and characterized by low-dose stimulation and high-dose inhibition. C. microsphaera was more sensitive to both antibiotics than M. aeruginosa was. The algal cell membranes of both species disintegrated after exposure to a high concentration of OXY. All of the physiological parameters measured in this study were relatively stable at low concentrations of OXY and SMZ. After exposure to high concentrations of OXY and SMZ, photosynthetic activity decreased significantly, whereas lipid peroxidation and the abundance of SOD, MDA, and protein increased significantly. Thus, low-dose antibiotics may increase algal blooms in eutrophic waters.
Key words:    antibiotics|cyanobacterium|green algae|physiology|growth   
Received: 2019-08-21   Revised: 2019-10-08
Tools
PDF (2754 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xudong ZHOU
Articles by Xincheng JIANG
Articles by Shan GAO
Articles by Zhenjia WAN
Articles by Pengcheng GAO
References:
Allen R D, Webb R P, Schake S A. 1997. Use of transgenic plants to study antioxidant defenses. Free Radical Biology and Medicine, 23(3):473-79, https://doi.org/10.1016/S0891-5849(97)00107-X.
Beauchamp C, Irwin F. 1971. Superoxide dismutase:improved assays and an assay applicable to acrylamide gels.Analytical Biochemistry, 44(1):276-287, https://doi.org/10.1016/0003-2697(71)90370-8.
Björkman O, Demmig B. 1987. Photon yield of O2 evolution and chlorophyll fluorescence characteristics at 77 k among vascular plants of diverse origins. Planta, 170(4):489-504, https://doi.org/10.1007/BF00402983.
Bold H C. 1949. The morphology of Chlamydomonas chlamydogama, sp. nov. Bulletin of the Torrey Botanical Club, 76(2):101, https://doi.org/10.2307/2482218.
Bowler C, Montagu M V, Inze D. 1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology, 43:83-116, https://doi.org/10.1146/annurev.pp.43.060192.000503.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-54, https://doi.org/10.1016/0003-2697(76)90527-3.
Deng W J, Li N, Zheng H L, Lin H Y. 2016. Occurrence and risk assessment of antibiotics in river water in Hong Kong.Ecotoxicology and Environmental Safety, 125:121-127, https://doi.org/10.1016/J.ECOENV.2015.12.002.
Dixit V, Pandey V, Shyam R. 2002. Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria.Plant, Cell & Environment, 25(5):687-693, https://doi.org/10.1046/j.1365-3040.2002.00843.x.
Du J, Zhao H X, Liu S S, Xie H J, Wang Y, Chen J W. 2017.Antibiotics in the coastal water of the South Yellow Sea in China:occurrence, distribution and ecological risks.Science of the Total Environment, 595:521-527, https://doi.org/10.1016/j.scitotenv.2017.03.281.
Ferreira C S G, Nunes B A, de Melo Henriques-Almeida J M, Guilhermino L. 2007. Acute toxicity of oxytetracycline and florfenicol to the microalgae Tetraselmis chuii and to the crustacean Artemia parthenogenetica. Ecotoxicology and Environmental Safety, 67(3):452-458, https://doi.org/10.1016/J.ECOENV.2006.10.006.
Fu L, Huang T, Wang S, Wang X H, Su L M, Li C, Zhao Y H. 2017. Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere, 168:217-222, https://doi.org/10.1016/j.chemosphere.2016.10.043.
González-Pleiter M, Gonzalo S, Rodea-Palomares I, Leganés F, Rosal R, Boltes K, Marco E, Fernández-Piñas F. 2013.Toxicity of five antibiotics and their mixtures towards photosynthetic aquatic organisms:implications for environmental risk assessment. Water Research, 47(6):2 050-2 064, https://doi.org/10.1016/j.watres.2013.01.020.
Gumbo J R, Cloete T E. 2011. Light and electron microscope assessment of the lytic activity of Bacillus on Microcystis aeruginosa. African Journal of Biotechnology, 10(41):8 054-8 063, https://doi.org/10.5897/AJB10.1311.
Han W, Jing Y S, Li T. 2015. Compensatory growth in Microcystis aeruginosa after moderate high-temperature exposure. Journal of Limnology, 74(3):549-558, https://doi.org/10.4081/jlimnol.2015.1164.
He Z X, Cheng X R, Kyzas G Z, Fu J. 2016. Pharmaceuticals pollution of aquaculture and its management in China.Journal of Molecular Liquids, 223:781-789, https://doi.org/10.1016/j.molliq.2016.09.005.
Hernando M D, Mezcua M, Fernández-Alba A R, Barceló D. 2006. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta, 69(2):334-342, https://doi.org/10.1016/J.TALANTA.2005.09.037.
Hoerr V, Duggan G E, Zbytnuik L, Poon K K H, Groß C, Neugebauer U, Methling K, Löffler B, Vogel H J. 2016.Characterization and prediction of the mechanism of action of antibiotics through NMR metabolomics. BMC Microbiology, 16(1):82, https://doi.org/10.1186/s12866-016-0696-5.
Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A. 2005.Toxic and genotoxic evaluation of six antibiotics on nontarget organisms. Science of the Total Environment, 346(1-3):87-98, https://doi.org/10.1016/j.scitotenv.2004.11.017.
Jiang L, Hu X L, Yin D Q, Zhang H C, Yu Z Y. 2011.Occurrence, distribution and seasonal variation of antibiotics in the Huangpu River, Shanghai, China.Chemosphere, 82(6):822-828, https://doi.org/10.1016/j.chemosphere.2010.11.028.
Kemper N. 2008. Veterinary antibiotics in the aquatic and terrestrial environment. Ecological Indicators, 8(1):1-13, https://doi.org/10.1016/j.ecolind.2007.06.002.
Kobraei M E, White D S. 1996. Effects of 2, 4-dichlorophenoxyacetic acid on Kentucky algae:simultaneous laboratory and field toxicity testings.Archives of Environmental Contamination and Toxicology, 31(4):571-580, https://doi.org/10.1007/BF00212442.
Krause G H. 1988. Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms.Physiologia Plantarum, 74(3):566-574, https://doi.org/10.1111/j.1399-3054.1988.tb02020.x.
Li N, Zhang X B, Wu W, Zhao X H. 2014. Occurrence, seasonal variation and risk assessment of antibiotics in the reservoirs in North China. Chemosphere, 111:327-335, https://doi.org/10.1016/j.chemosphere.2014.03.129.
Liu W H, Ming Y, Huang Z W, Li P. 2012. Impacts of florfenicol on marine diatom Skeletonema costatum through photosynthesis inhibition and oxidative damages. Plant Physiology and Biochemistry, 60:165-170, https://doi.org/10.1016/J.PLAPHY.2012.08.009.
Liu X H, Lu S Y, Guo W, Xi B D, Wang W L. 2018. Antibiotics in the aquatic environments:a review of lakes, China.Science of the Total Environment, 627:1 195-1 208, https://doi.org/10.1016/j.scitotenv.2018.01.271.
Lu L, Wu Y X, Ding H J, Zhang W H. 2015. The combined and second exposure effect of copper (Ⅱ) and chlortetracycline on fresh water algae, Chlorella pyrenoidosa and Microcystis aeruginosa. Environmental Toxicology and Pharmacology, 40(1):140-148, https://doi.org/10.1016/J.ETAP.2015.06.006.
Lürling M, Roessink I. 2006. On the way to cyanobacterial blooms:impact of the herbicide metribuzin on the competition between a green alga (Scenedesmus) and a cyanobacterium (Microcystis). Chemosphere, 65(4):618-626, https://doi.org/10.1016/j.chemosphere.2006.01.073.
Millonig G. 1961. A modified procedure for lead staining of thin sections. The Journal of Biophysical and Biochemical Cytology, 11(3):736-739, https://doi.org/10.1083/jcb.11.3.736.
Mishra S, Srivastava S, Tripathi T D, Govindarajan R, Kuriakose S V, Prasad M N V. 2006. Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa Monnieri L. Plant Physiology and Biochemistry, 44(1):25-37, https://doi.org/10.1016/J.PLAPHY.2006.01.007.
Ohkawa H, Ohishi N, Yagi K. 1979. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry,95(2):351-358, https://doi.org/10.1016/0003-2697(79)90738-3.
Osman M E H, El-Naggar A H, El-Sheekh M M, El-Mazally E E. 2004. Differential effects of Co2+ and Ni2+ on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environmental Toxicology and Pharmacology, 16(3):169-178, https://doi.org/10.1016/j.etap.2003.12.004.
Pivokonsky M, Safarikova J, Baresova M, Pivokonska L, Kopecka I. 2014. A comparison of the character of algal extracellular versus cellular organic matter produced by cyanobacterium, diatom and green alga. Water Research, 51:37-46, https://doi.org/10.1016/j.watres.2013.12.022.
Qian H F, Xu X Y, Chen W, Jiang H, Jin Y X, Liu W P, Fu Z W. 2009. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris.Chemosphere, 75(3):368-375, https://doi.org/10.1016/j.chemosphere.2008.12.040.
Roháček K, Barták M. 1999. Technique of the modulated chlorophyll fluorescence:basic concepts, useful parameters, and some applications. Photosynthetica, 37(3):339-363, https://doi.org/10.1023/A:1007172424619.
Rzymski P, Poniedzialek B, Niedzielski P, Tabaczewski P, Wiktorowicz K. 2014. Cadmium and lead toxicity and bioaccumulation in Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 8(3):427-432, https://doi.org/10.1007/s11783-013-0566-4.
Sabatini S E, Juárez Á B, Eppis M R, Bianchi L, Luquet C M, del Carmen Ríos de Molina M. 2009. Oxidative stress and antioxidant defenses in two green microalgae exposed to copper. Ecotoxicology and Environmental Safety, 72(4):1 200-1 206, https://doi.org/10.1016/j.ecoenv.2009.01.003.
Seoane M, Rioboo C, Herrero C, Cid Á. 2014. Toxicity induced by three antibiotics commonly used in aquaculture on the marine microalga Tetraselmis suecica (Kylin) Butch.Marine Environmental Research, 101:1-7, https://doi.org/10.1016/j.marenvres.2014.07.011.
Shalata A, Mittova V, Volokita M, Guy M, Tal M. 2001.Response of the cultivated tomato and its wild salttolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:the root antioxidative system.Physiologia Plantarum, 112(4):487-494, https://doi.org/10.1034/j.1399-3054.2001.1120405.x.
Shi S Y, Tang D S, Liu Y D. 2009. Effects of an algicidal bacterium Pseudomonas mendocina on the growth and antioxidant system of Aphanizomenon flos-aquae. Current Microbiology, 59(2):107-112, https://doi.org/10.1007/s00284-009-9404-0.
Song C, Zhang C, Fan L M, Qiu L P, Wu W, Meng S L, Hu G D, Kamira B, Chen J Z. 2016. Occurrence of antibiotics and their impacts to primary productivity in fishponds around Tai Lake, China. Chemosphere, 161:127-135.
Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G. 1971.Purification and properties of unicellular blue-green algae(order Chroococcales). Bacteriological Reviews, 35(2):171-205.
Tang D, Shi S, Li D, Hu C, Liu Y. 2007. Physiological and biochemical responses of Scytonema javanicum(Cyanobacterium) to salt stress. Journal of Arid Environments, 71(3):312-320, https://doi.org/10.1016/j.jaridenv.2007.05.004.
Tang X M, Krausfeldt L E, Shao K Q, LeCleir G R, Stough J M A, Gao G, Boyer G L, Zhang Y L, Paerl H W, Qin B Q, Wilhelm S W. 2018. Seasonal gene expression and the ecophysiological implications of toxic Microcystis aeruginosa blooms in Lake Taihu. Environmental Science & Technology, 52(19):11 049-11 059, https://doi.org/10.1021/acs.est.8b01066.
van der Grinten E, Pikkemaat M G, van den Brandhof E J, Stroomberg G J, Kraak M H S. 2010. Comparing the sensitivity of algal, cyanobacterial and bacterial bioassays to different groups of antibiotics. Chemosphere, 80(1):1-6, https://doi.org/10.1016/j.chemosphere.2010.04.011.
Villagrasa E, Ferrer-Miralles N, Millach L, Obiol A, Creus J, Esteve I, Solé A. 2019. Morphological responses to nitrogen stress deficiency of a new heterotrophic isolated strain of Ebro delta microbial mats. Protoplasma, 256(1):105-116.
Wan J J, Guo P Y, Peng X F, Wen K Q. 2015. Effect of erythromycin exposure on the growth, antioxidant system and photosynthesis of Microcystis flos-aquae. Journal of Hazardous Materials, 283:778-786, https://doi.org/10.1016/J.JHAZMAT.2014.10.026.
Wang C, Wang Z Y, Wang P F, Zhang S H. 2016. Multiple effects of environmental factors on algal growth and nutrient thresholds for harmful algal blooms:application of response surface methodology. Environmental Modeling & Assessment, 21(2):247-259, https://doi.org/10.1007/s10666-015-9481-3.
Wen Y Z, Yuan Y L, Chen H, Xu D M, Lin K D, Liu W P. 2010.Effect of chitosan on the enantioselective bioavailability of the herbicide dichlorprop to Chlorella pyrenoidosa.Environmental Science & Technology, 44(13):4 981-4 987, https://doi.org/10.1021/es100507p.
Wu H Y, Jiang H, Liu C X, Deng Y Y. 2015. Growth, pigment composition, chlorophyll fluorescence and antioxidant defenses in the red alga Gracilaria lemaneiformis(Gracilariales, Rhodophyta) under light stress. South African Journal of Botany, 100:27-32, https://doi.org/10.1016/j.sajb.2015.05.017.
Xu D M, Xiao Y P, Pan H, Mei Y. 2019. Toxic effects of tetracycline and its degradation products on freshwater green algae. Ecotoxicology and Environmental Safety, 174:43-47, https://doi.org/10.1016/j.ecoenv.2019.02.063.
Xu W H, Zhang G, Li X D, Zou S C, Li P, Hu Z H, Li J. 2007a.Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research, 41(19):4 526-4 534, https://doi.org/10.1016/J.WATRES.2007.06.023.
Xu W H, Zhang G, Zou S C, Li X D, Liu Y C. 2007b.Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using highperformance liquid chromatography-electrospray ionization tandem mass spectrometry. Environmental Pollution, 145(3):672-679, https://doi.org/10.1016/J.ENVPOL.2006.05.038.
Yang W W, Tang Z P, Zhou F Q, Zhang W H, Song L R. 2013.Toxicity studies of tetracycline on Microcystis aeruginosa and Selenastrum capricornutum. Environmental Toxicology and Pharmacology, 35(2):320-324, https://doi.org/10.1016/j.etap.2013.01.006.
Zhang Q Q, Ying G G, Pan C G, Liu Y S, Zhao J L. 2015.Comprehensive evaluation of antibiotics emission and fate in the river basins of China:source analysis, multimedia modeling, and linkage to bacterial resistance.Environmental Science & Technology, 49(11):6 772-6 782, https://doi.org/10.1021/acs.est.5b00729.
Zhang Y, Jiang H B, Qiu B S. 2013. Effects of UVB radiation on competition between the bloom-forming cyanobacterium Microcystis aeruginosa and the Chlorophyceae chlamydomonas microsphaera. Journal of Phycology, 49(2):318-328, https://doi.org/10.1111/jpy.12038.
Copyright © Haiyang Xuebao