Cite this paper:
Zhihai ZHONG, Zhengyi LIU, Longchuan ZHUANG, Wanlin SONG, Weizhou CHEN. Effects of temperature on photosynthetic performance and nitrate reductase activity in vivo assay in Gracilariopsis lemaneiformis (Rhodophyta)[J]. Journal of Oceanology and Limnology, 2021, 39(1): 362-371

Effects of temperature on photosynthetic performance and nitrate reductase activity in vivo assay in Gracilariopsis lemaneiformis (Rhodophyta)

Zhihai ZHONG1, Zhengyi LIU1, Longchuan ZHUANG1, Wanlin SONG1, Weizhou CHEN2
1 Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
2 Shantou University, Shantou 515063, China
Abstract:
Gracilariopsis lemaneiformis is an economically-valued species and widely cultured in China at present. After being acclimated to different growth temperatures (15, 20, 25, and 30℃) for 7 days, the relative growth rate (RGR), nitrate reductase activity, soluble protein content and chlorophyll a fluorescence of G. lemaneiformis were examined. Results show that RGR was markedly affected by temperature especially at 20℃ at which G. lemaneiformis exhibited the highest effective quantum yield of PSⅡ[Y(Ⅱ)] and lightsaturated electron transport rate (ETRmax), but the lowest non-photochemical quenching. Irrespective of growth temperature, the nitrate reductase activity increased with the incubation temperature from 15 to 30℃. In addition, the greatest nitrate reductase activity was found in the thalli grown at 20℃. The value of temperature coefficient Q10 of alga cultured in 15℃ was the greatest among those of other temperatures tested. Results indicate that the optimum temperature for nitrate reductase synthesis was relatively lower than that for nitrate reductase activity, and the relationship among growth, photosynthesis, and nitrate reductase activity showed that the optimum temperature for activity of nitrate reductase in vivo assay should be the same to the optimal growth temperature.
Key words:    chlorophyll a fluorescence|Gracilariopsis lemaneiformis|growth|nitrate reductase activity   
Received: 2019-11-20   Revised: 2019-12-30
Tools
PDF (900 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Zhihai ZHONG
Articles by Zhengyi LIU
Articles by Longchuan ZHUANG
Articles by Wanlin SONG
Articles by Weizhou CHEN
References:
Berry J, Bjorkman O. 1980. Photosynthetic response and adaptation to temperature in higher plants. Annual Review of Plant Biology, 31(1):491-543, https://doi.org/10.1146/annurev.pp.31.060180.002423.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1):248-254, https://doi.org/10.1016/0003-2697(76)90527-3.
Cabello-Pasini A, Macías-Carranza V, Abdala R, Korbee N,Figueroa F L. 2011. Effect of nitrate concentration and UVR on photosynthesis, respiration, nitrate reductase activity, and phenolic compounds in Ulva rigida(Chlorophyta). Journal of Applied Phycology, 23(3):363-369, https://doi.org/10.1007/s10811-010-9548-0.
Campbell W H. 1999. Nitrate reductase structure, function and regulation:bridging the gap between biochemistry and physiology. Annual Review of Plant Biology, 50(1):277-303, https://doi.org/10.1146/annurev.arplant.50.1.277.
Chen B B, Zou D H, Du H, Ji Z W. 2018. Carbon and nitrogen accumulation in the economic seaweed Gracilaria lemaneiformis affected by ocean acidification and increasing temperature. Aquaculture, 482:176-182, https://doi.org/10.1016/j.aquaculture.2017.09.042.
Chen B B, Zou D H, Jiang H. 2015. Elevated CO2 exacerbates competition for growth and photosynthesis between Gracilaria lemaneiformis and Ulva lactuca. Aquaculture, 443:49-55, https://doi.org/10.1016/j.aquaculture.2015.03.009.
Chow F and Oliveira M C. 2008. Rapid and slow modulation of nitrate reductase activity in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta):influence of different nitrogen sources. Journal of Applied Phycology, 20:775-782, https://doi.org/10.1007/s10811-008-9310-z.
Chow F, Capociama F V, Faria R, Oliveira M C. 2007.Characterization of nitrate reductase activity In vitro in Gracilaria caudata J. Agardh (Rhodophyta, Gracilariales).Brazilian Journal of Botany, 30(1):123-129, https://doi.org/10.1590/S0100-84042007000100012.
Chow F, Macchiavello J, Cruz S S, Fonck E, Olivares J. 2001.Utilization of Gracilaria chilensis (Rhodophyta:Gracilariaceae) as a biofilter in the depuration of effluents from tank cultures of fish, oysters, and sea urchins.Journal of the World Aquaculture Society, 32(2):215-220, https://doi.org/10.1111/j.1749-7345.2001.tb01098.x.
Chow F, Oliveira M C, Pedersén M. 2004. In vitro assay and light regulation of nitrate reductase in red alga Gracilaria chilensis. Journal of Plant Physiology, 161(7):769, https://doi.org/10.1016/j.jplph.2004.01.002.
Chow F, Pedersén M, Oliveira M C. 2013. Modulation of nitrate reductase activity by photosynthetic electron transport chain and nitric oxide balance in the red macroalga Gracilaria chilensis (Gracilariales, Rhodophyta). Journal of Applied Phycology, 25(6):1 847-1 853, https://doi.org/10.1007/s10811-013-0005-8.
Collos Y, Slawyk G. 1977. Nitrate reductase activity as a function of in situ nitrate uptake and environmental factors of euphotic zone profiles. Journal of Experimental Marine Biology and Ecology, 29(2):119-130, https://doi.org/10.1016/0022-0981(77)90043-0.
Corzo A, Niell F X. 1991. Determination of nitrate reductase activity in Ulva rigida C. Agardh by the in situ method.Journal of Experimental Marine Biology and Ecology, 146(2):181-191, https://doi.org/10.1016/0022-0981(91)90024-Q.
Crawford N M, Arst Jr H N. 1993. The molecular genetics of nitrate assimilation in fungi and plants. Annual Review of Genetics, 27(1):115-146, https://doi.org/10.1146/annurev.ge.27.120193.000555.
Davison I R. 1991. Environmental effects on algal photosynthesis:temperature. Journal of Phycology, 27(1):2-8, https://doi.org/10.1111/j.0022-3646.1991.00002.x.
Dovis V L, Hippler F W R, Silva K I, Ribeiro R V, Machado E C, Mattos Jr D. 2014. Optimization of the nitrate reductase activity assay for citrus trees. Brazilian Journal of Botany, 37(4):383-390, https://doi.org/10.1007/s40415-014-0083-0.
Eilers P, Peeters J. 1988. A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecological Modelling, 42(3):199-215, https://doi.org/10.1016/0304-3800(88)90057-9.
Eppley R W, Packard T T, MacIsaac J J. 1970. Nitrate reductase in Peru Current phytoplankton. Marine Biology, 6(3):195-199, https://doi.org/10.1007/BF00347227.
Gao G, Clare A S, Rose C, Caldwell G S. 2017. Intrinsic and extrinsic control of reproduction in the green tide-forming alga, Ulva rigida. Environmental and Experimental Botany, 139:14-22, https://doi.org/10.1016/j.envexpbot. 2017.03.016.
Gao G, Clare A S, Rose C, Caldwell G S. 2018. Ulva rigida in the future ocean:potential for carbon capture, bioremediation and biomethane production. Global Change Biology Bioenergy, 10:39-51, https://doi.org/10.1111/gcbb.12465.
Gao G, Zhong Z H, Zhou X H, Xu J T. 2016. Changes in morphological plasticity of Ulva prolifera under different environmental conditions:a laboratory experiment.Harmful Algae, 59:51-58, https://doi.org/10.1016/j.hal.2016.09.004.
Gao Y, Smith G J, Alberte R S. 1992. Light regulation of nitrate reductase in Ulya fenestrata (Chlorophyceae). Marine Biology, 112(4):691-696, https://doi.org/10.1007/BF00346188.
Gao Y, Smith G J, Alberte R S. 2000. Temperature dependence of nitrate reductase activity in marine phytoplankton:biochemical analysis and ecological implications. Journal of Phycology, 36(2):304-313, https://doi.org/10.1046/j.1529-8817.2000.99195.x.
Genty B, Briantais J M, Baker N R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta (BBA)-General Subjects, 990(1):87-92, https://doi.org/10.1016/S0304-4165(89)80016-9.
González-Galisteo S, Packard T T, Gómez M, Herrera A, Dugdale R C, Wilkerson F P, Barber R T, Blasco D, Christensen J P, Codispoti L A. 2019. Calculating new production from nitrate reductase activity and light in the Peru current upwelling. Progress in Oceanography, 173:78-85, https://doi.org/10.1016/j.pocean.2019.02.009.
Gu Y Y, Cheong K L, Du H. 2017. Modification and comparison of three Gracilaria spp. Agarose with methylation for promotion of its gelling properties. Chemistry Central Journal, 11:104, https://doi.org/10.1186/s13065-017-0334-9.
Jitts H R, McAllister C D, Stephens K, Strickland J D H. 1964.The cell division rates of some marine phytoplankters as a function of light and temperature. Journal of the Fisheries Research Board of Canada, 21(1):139-157, https://doi.org/10.1139/f64-012.
Kristiansen S. 1983. The temperature optimum of the nitrate reductase assay for marine phytoplankton. Limnology and Oceanography, 28(4):776-780, https://doi.org/10.4319/lo.1983.28.4.0776.
Lapointe B E, Duke C S. 1984. Biochemical strategies for growth of Gracilaria tikvahiae (Rhodophyta) in relation to light intensity and nitrogen availability. Journal of Phycology,20(4):488-495, https://doi.org/10.1111/j.0022-3646.1984.00488.x.
Liu X J, Wen J Y, Chen W Z, Du H. 2019. Physiological effects of nitrogen deficiency and recovery on the macroalga Gracilariopsis lemaneiformis (Rhodophyta). Journal of Phycology, 55:830-839, https://doi.org/10.1111/jpy. 12862.
Lopes P F, Oliveira M C, Colepicolo P C. 1997. Diurnal fluctuation of nitrate reductase activity in the marine red alga Gracilaria tenuistipitata (Rhodophyta). Journal of Phycology, 33(2):225-231, https://doi.org/10.1111/j.0022-3646.1997.00225.x.
Los D A, Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. Biochimica et Biophysica Acta, 1666:142-157, https://doi.org/10.1016/j.bbamem.2004.08.002.
Nie G Y, Robertson E J, Fryer M J, Leech R M, Baker N R. 1995. Response of the photosynthetic apparatus in maize leaves grown at low temperature on transfer to normal growth temperature. Plant, Cell & Environment, 18:1-12, https://doi.org/10.1111/j.1365-3040.1995.tb00538.x.
Rasmusson L M, Gullström M, Gunnarsson P C B, George R, Björk M. 2019. Estimation of a whole plant Q10 to assess seagrass productivity during temperature shifts. Scientific Reports, 9:12 667, https://doi.org/10.1038/s41598-019-49184-z.
Raven J A, Giordano M, Beardall J, Maberly S C. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research, 109(1-3):281-296, https://doi.org/10.1007/s11120-011-9632-6.
Read S M, Northcote D. 1981. Minimization of variation in the response to different proteins of the Coomassie blue G dyebinding assay for protein. Analytical Biochemistry, 116(1):53-64, https://doi.org/10.1016/0003-2697(81)90321-3.
Sage R F, Kubien D S. 2007. The temperature response of C3 and C4 photosynthesis. Plant, Cell and Environment, 30:1086-1106, https://doi.org/10.1111/j.1365-3040.2007.01682.x.
Silva J, Santos R. 2004. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii? Journal of Experimental Marine Biology and Ecology, 307(2):207-216, https://doi.org/10.1016/j.jembe.2004.02.009.
Staehr P A, Wernberg T. 2009. Physiological responses of Ecklonia radiata (Laminariales) to a latitudinal gradient in ocean temperature. Journal of Phycology, 45(1):91-99, https://doi.org/10.1111/j.1529-8817.2008.00635.x.
Teichberg M, Heffner L R, Fox S, Valiela I. 2007. Nitrate reductase and glutamine synthetase activity, internal N pools, and growth of Ulva lactuca:responses to long and short-term N supply. Marine Biology, 151(4):1 249-1 259, https://doi.org/10.1007/s00227-006-0561-4.
Thomas R J, Hipkin C R, Syrett P J. 1976. The interaction of nitrogen assimilation with photosynthesis in nitrogen deficient cells of Chlorella. Planta, 133(1):9-13, https://doi.org/10.1007/BF00385999.
Turpin D H, Weger H G. 1988. Steady-state chlorophyll a fluorescence transients during ammonium assimilation by the N-limited green alga Selenastrum minutum. Plant Physiology, 88(1):97-101, https://doi.org/10.1104/pp.88.1.97.
Turpin D H. 1991. Effects of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology, 27(1):14-20, https://doi.org/10.1111/j.0022-3646.1991.00014.x.
Vanlerberghe G C, Schuller K A, Smith R G, Feil R, Plaxton W C, Turpin D H. 1990. Relationship between NH4+ assimilation rate and in vivo phosphoenolpyruvate carboxylase activity:regulation of anaplerotic carbon flow in the Green Alga Selenastrum minutum. Plant Physiology, 94(1):284-290, https://doi.org/10.1104/pp.94.1.284.
Varela D A, Hernríquez L A, Fernández P A, Leal P, HernándezGonzález M C, Figueroa F L, Buschmann A H. 2018.Photosynthesis and nitrogen uptake of the giant kelp Macrocystis pyrifera (Ochrophyta) grown close to salmon farms. Marine Environmental Research, 135:93-102, https://doi.org/10.1016/j.marenvres.2018.02.002.
Vona V, Martino Rigano Di V, Lobosco O, Carfagna S, Esposito S, Rigano C. 2004. Temperature responses of growth, photosynthesis, respiration and NADH:nitrate reductase in cryophilic and mesophilic algae. New Phytologist, 163(2):325-331, https://doi.org/10.1111/j.1469-8137.2004.01098.x.
Xu Z G, Gao G, Xu J T, Wu H Y. 2017. Physiological response of a golden tide alga (Sargassum muticum) to the interaction of ocean acidification and phosphorus enrichment. Biogeosciences, 14:671-681, https://doi.org/10.5194/bg-14-671-2017.
Xu Z G, Gao K S. 2009. Impacts of UV radiation on growth and photosynthetic carbon acquisition in Gracilaria lemaneiformis (Rhodophyta) under phosphorus-limited and replete conditions. Functional Plant Biology, 36:1 057-1 064, https://doi.org/10.1071/FP09092.
Xu Z G, Gao K S. 2012. NH+4 enrichment and UV radiation interact to affect the photosynthesis and nitrogen uptake of Gracilaria lemaneiformis (Rhodophyta). Marine Pollution Bulletin, 64:99-105, https://doi.org/10.1016/j.marpolbul.2011.10.016.
Yang H, Zhou Y, Mao Y Z, Li X X, Liu Y, Zhang F. 2005.Growth characters and photosynthetic capacity of Gracilaria lemaneiformis as a biofilter in a shellfish farming area in Sanggou Bay, China. Journal of Applied Phycology, 17(3):199-206, https://doi.org/10.1007/s10811-005-6419-1.
Yang Y F, Fei X G, Song J M, Hu H Y, Wang G C, Chung I K. 2006. Growth of Gracilaria lemaneiformis under different cultivation conditions and its effects on nutrient removal in Chinese coastal waters. Aquaculture, 254(1):248-255, https://doi.org/10.1016/j.aquaculture.2005.08.029.
Young E B, Dring M J, Savidge G, Birkett D A, Berges J A. 2007. Seasonal variations in nitrate reductase activity and internal N pools in intertidal brown algae are correlated with ambient nitrate concentrations. Plant, Cell and Environment, 30(6):764-774, https://doi.org/10.1111/j.1365-3040.2007.01666.x.
Yu J, Yang Y F. 2008. Physiological and biochemical response of seaweed Gracilaria lemaneiformis to concentration changes of N and P. Journal of Experimental Marine Biology and Ecology, 367(2):142-148, https://doi.org/10.1016/j.jembe.2008.09.009.
Zou D H, Gao K S. 2009. Effects of elevated CO2 on the red seaweed Gracilaria lemaneiformis (Gigartinales, Rhodophyta) grown at different irradiance levels.Phycologia, 48(6):510-517, https://doi.org/10.2216/08-99.1.
Zou D H. 2005. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme(Sargassaceae, Phaeophyta). Aquaculture, 250(3):726-735, https://doi.org/10.1016/j.aquaculture.2005.05.014.
Copyright © Haiyang Xuebao