Cite this paper:
Shuai LI, Guangtao ZHANG. Role of intraspecific competition in intrinsic growth rate regulation in an Oikopleura dioica (Tunicata) population[J]. Journal of Oceanology and Limnology, 2021, 39(2): 609-622

Role of intraspecific competition in intrinsic growth rate regulation in an Oikopleura dioica (Tunicata) population

Shuai LI1,2, Guangtao ZHANG1,2,3
1 Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China;
3 Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
Planktonic Oikopleura dioica respond almost instantly to opportunistic algal blooms, but it is unknown whether the population increase can change from an exponential to a logistic model to avoid a final sudden collapse. To test the hypothesis that intraspecific competition regulates the intrinsic rate of natural increase (r), density-dependent effects on growth and reproduction performance were investigated in O. dioica via laboratory incubations. Over a large food concentration range, batch maturation was observed above the per capita food supply (PFS) of 8.1 μg C/ind. in 4.5 d. Somatic growth was saturated beyond this PFS value, whereas gonad length increased continuously. Below this threshold, individuals reached small body and gonad lengths, and maturation was rarely observed during the incubation period. The gonad/body volume and maturation ratios also increased with the PFS. Instead of the food concentration, the r values were regulated by competition pressure via variability in maturation duration and the proportion of mature individuals in the cohorts. When the minimum food demand was satisfied in the designated generation time, the r value tended to be regulated by the spawning proportion in the population. Otherwise, prolonged development duration and decreased r values were expected.
Key words:    Oikopleura dioica|population size|intraspecific competition|growth|fecundity|rmax   
Received: 2020-01-31   Revised: 2020-03-13
Tools
PDF (1372 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Shuai LI
Articles by Guangtao ZHANG
References:
Acuña J L, Kiefer M. 2000. Functional response of the appendicularian Oikopleura dioica. Limnology and Oceanography, 45(3):608-618, https://doi.org/10.4319/lo.2000.45.3.0608.
Aksnes D L, Giske J. 1990. Habitat profitability in pelagic environments. Marine Ecology Progress Series, 64:209-215.
Alldredge A L. 2005. The contribution of discarded appendicularian houses to the flux of particulate organic carbon from oceanic surface waters. In:Gorsky G, Youngbluth M J, Deibel D eds. Response of Marine Ecosystems to Global Change:Ecological Impact of Appendicularians. Contemporary Publishing International, Paris. p.309-326.
Amelina A B, Sergeeva V M, Arashkevich E G, Drits A V, Louppova N E, Solovyev K A. 2017. Feeding of the dominant herbivorous plankton species in the black sea and their role in coccolithophorid consumption. Oceanology, 57(6):806-816.
Bouquet J M, Spriet E, Troedsson C, Ottera H, Chourrout D, Thompson E M. 2009. Culture optimization for the emergent zooplanktonic model organism Oikopleura dioica. Journal of Plankton Research, 31(4):359-370.
Deibel D, Cavaletto J F, Riehl M, Gardner W S. 1992. Lipid and lipid class content of the pelagic tunicate Oikopleura vanhoeffeni. Marine Ecology Progress Series, 88:297-302.
Deibel D, Lowen B. 2012. A review of the life cycles and life-history adaptations of pelagic tunicates to environmental conditions. ICES Journal of Marine Science, 69(3):358-369.
Fenaux R, Bedo A, Gorsky G. 1986. Premiéres données sur la dynamique d'une population d'Oikopleura dioica Fol, 1872 (Appendiculaire) en élevage. Canadian Journal of Zoology, 64(8):1 745-1 749.
Fernández D, López-Urrutia A, Fernández A, Acuña J L, Harris R. 2004. Retention efficiency of 0.2 to 6 μm particles by the appendicularians Oikopleura dioica and Fritillaria borealis. Marine Ecology Progress Series, 266:89-101.
Flood P R, Deibel D. 1998. The appendicularian house. In:Bone Q ed. The Biology of Pelagic Tunicates. Oxford University Press, Oxford. p.105-124.
Ganot P, Bouquet J M, Kallesøe T, Thompson E M. 2007. The Oikopleura coenocyst, a unique chordate germ cell permitting rapid, extensive modulation of oocyte production. Developmental Biology, 302(2):591-600.
Gorsky G. 1980. Optimisation des cultures d'Appendiculaires, Approche du métabolisme de Oikopleura dioica. PhD thesis, University de Pierre et Marie Curie, Paris VI. 102 p.
Gorsky G, Palazzoli I, Fenaux R. 1987. Influence of temperature changes on oxygen uptake and ammonia and phosphate excretion, in relation to body size and weight, in Oikopleura dioica (Appendicularia). Marine Biology, 94(2):191-201, https://doi.org/10.1007/BF00392931.
Gorsky G, Palazzoli I. 1989. Aspects de la biologie de l'appendiculaire Oikopleura dioica Fol. 1872 (Chordata:tunicata). Oceanis, 15:39-49.
Gorsky G, Fenaux R. 1998. The role of Appendicularia in marine food webs. In:Bone Q ed. The Biology of Pelagic Tunicates. Oxford University Press, Oxford. p.161-169.
Gorsky M, Chrétiennot-Dinet M J, Blanchot J, Palazzoli I. 1999. Picoplankton and nanoplankton aggregation by appendicularians:fecal pellet contents of Megalocercus huxleyi in the equatorial Pacific. Journal of Geophysical Research:Oceans, 104(C2):3 381-3 390, https://doi.org/10.1029/98JC01850.
Hopcroft R R, Roff J C. 1995. Zooplankton growth rates:extraordinary production by the larvacean Oikopleura dioica in tropical waters. Journal of Plankton Research, 17(2):205-220, https://doi.org/10.1093/plankt/17.2.205.
Hopcroft R R, Roff J C, Bouman H A. 1998. Zooplankton growth rates:the larvaceans Appendicularia, Fritillaria and Oikopleura in tropical waters. Journal of Plankton Research, 20(3):539-555, https://doi.org/10.1111/gcb.13955.
Li S, Zhang G T, Zhao Z X. 2020. Growth performance of Oikopleura dioica during flood seasons in Jiaozhou Bay:implications on early maturation favored rapid response to environmental fluctuation. Regional Studies in Marine Science, 35:101124, https://doi.org/10.1016/j.rsma.2020.101124.
Livore J P, Connell S D. 2012. Reducing per capita food supply alters urchin condition and habitat. Marine Biology, 159(5):967-973, https://doi.org/10.1007/s00227-011-1875-4.
Lobón C M, Acuña J L, López-Álvarez M, Capitanio F L. 2011. Heritability of morphological and life history traits in a pelagic tunicate. Marine Ecology Progress Series, 422:145-154.
Lobón C M, Bouquet J M, Reeve M, Novac A, Acuña J L, Thompson E M, Troedsson C. 2013. Response of the pelagic tunicate appendicularian, Oikopleura dioica to controlled simulations of a strong bloom condition:a bottom-up perspective. Limnology and Oceanography, 58(1):215-226, https://doi.org/10.4319/lo.2013.58.1.0215.
Lombard F, Renaud F, Sainsbury C, Sciandra A, Gorsky G. 2009a. Appendicularian ecophysiology I:Food concentration dependent clearance rate, assimilation efficiency, growth and reproduction of Oikopleura dioica. Journal of Marine Systems, 78(4):606-616, https://doi.org/10.1016/j.jmarsys.2009.01.004.
Lombard F, Sciandra A, Gorsky G. 2009b. Appendicularian ecophysiology. II. Modeling nutrition, metabolism, growth and reproduction of the appendicularian Oikopleura dioica. Journal of Marine Systems, 78(4):617-629, https://doi.org/10.1016/j.jmarsys.2009.01.005.
López-Urrutia Á, Acuña J L, Irigoien X, Harris R. 2003b. Food limitation and growth in temperate epipelagic appendicularians (Tunicata). Marine Ecology Progress Series, 252:143-157.
López-Urrutia Á, Harris R, Smith T. 2004. Predation by calanoid copepods on the appendicularian Oikopleura dioica. Limnology and Oceanography, 49(1):303-307, https://doi.org/10.4319/lo.2004.49.1.0303.
López-Urrutia Á, Irigoien X, Acuña J L, Harris R. 2003a. In situ feeding physiology and grazing impact of the appendicularian community in temperate waters. Marine Ecology Progress Series, 252:125-141.
Martí-Solans J, Ferrández-Roldán A, Godoy-Marín H, Badia-Ramentol J, Torres-Aguila N P, Rodríguez-Marí A, Bouquet J M, Chourrout D, Thompson E M, Albalat R, Cañestro C. 2015. Oikopleura dioica culturing made easy:a low-cost facility for an emerging animal model in EvoDevo. Genesis, 53(1):183-193, https://doi.org/10.1002/dvg.22800.
Nakamura Y, Suzuki K, Suzuki S Y, Hiromi J. 1997. Production of Oikopleura dioica (Appendicularia) following a picoplankton ‘bloom’ in a eutrophic coastal area. Journal of Plankton Research, 19(1):113-124.
Paffenhöfer G A. 1973. The Cultivation of an Appendicularian through numerous generations. Marine Biology, 22(2):183-185, https://doi.org/10.1007/BF00391782.
Purcell J E, Sturdevant M V, Galt C P. 2004. A review of appendicularians as prey of fish and invertebrate predators. In:Gorsky G, Youngbluth M J, Deibel D eds. Response of Marine Ecosystems to Global Change:Ecological Impact of Appendicularians. Contemporary Publishing International, Paris. p.359-435.
Robison B H, Reisenbichler K R, Sherlock R E. 2005. Giant larvacean houses:rapid carbon transport to the deep sea floor. Science, 308(5728):1 609-1 611.
Sato R, Tanaka Y, Ishimaru T. 2001. House production by Oikopleura dioica (Tunicata, Appendicularia) under laboratory conditions. Journal of Plankton Research, 23(4):415-423, https://doi.org/10.1093/plankt/23.4.415.
Selander E, Tiselius P. 2003. Effects of food concentration on the behavior of Oikopleura dioica. Marine Biology, 142(2):263-270, https://doi.org/10.1007/s00227-002-0949-8.
Sommer F, Hansen T, Feuchtmayr H, Santer B, Tokle N, Sommer U. 2003. Do calanoid copepods suppress appendicularians in the coastal ocean? Journal of Plankton Research, 25(7):869-871.
Spinelli M, Derisio C, Martos P, Pájaro M, Esnal G, Mianzán H, Capitanio F. 2015. Diel vertical distribution of the larvacean Oikopleura dioica in a North Patagonian tidal frontal system (42°-45°S) of the SW Atlantic Ocean.
Marine Biology Research, 11(6):633-643, https://doi.org/10.1080/17451000.2014.978338.
Stibor H, Vadstein O, Lippert B, Roederer W, Olsen Y. 2004. Calanoid copepods and nutrient enrichment determine population dynamics of the appendicularian Oikopleura dioica:a mesocosm experiment. Marine Ecology Progress Series, 270:209-215.
Troedsson C, Bouquet J M, Aksnes D L, Thompson E M. 2002. Resource allocation between somatic growth and reproductive output in the pelagic chordate Oikopleura dioica allows opportunistic response to nutritional variation. Marine Ecology Progress Series, 243:83-91.
Troedsson C, Bouquet J M, Lobon C M, Novac A, Nejstgaard J C, Dupont S, Bosak S, Jakobsen H H, Romanova N, Pankoke L M, Isla A, Dutz J, Sazhin A F, Thompson E M. 2013. Effects of ocean acidification, temperature and nutrient regimes on the appendicularian Oikopleura dioica:A mesocosm study. Marine Biology, 160(8):2 175-2 187, https://doi.org/10.1007/s00227-012-2137-9.
Touratier F, Carlotti F, Gorsky G. 2003. Individual growth model for the appendicularian Oikopleura dioica. Marine Ecology Progress Series, 248:141-163.
Uye S I, Ichino S. 1995. Seasonal variations in abundance, size composition, biomass and production rate of Oikopleura dioica (Fol) (Tunicata:Appendicularia) in a temperate eutrophic inlet. Journal of Experimental Marine Biology andEcology,189(1-2):1-11, https://doi.org/10.1016/0022-0981(95)00004-B.
Winder M, Bouquet J M, Bermúdez J R, Berger S A, Hansen T, Brandes J, Sazhin A F, Nejstgaard J C, Båmstedt U, Jakobsen H H, Dutz J, Frischer M E, Troedsson C, Thompson E M. 2017. Increased appendicularian zooplankton alter carbon cycling under warmer more acidified ocean conditions. Limnology and Oceanography, 62(4):1 541-1 551, https://doi.org/10.1002/lno.10516.
Copyright © Haiyang Xuebao