Cite this paper:
Ye CHEN, Siqi LI, Xiaoqing XU, Manman MA, Tiezhu MI, Yu ZHEN, Zhigang YU. Characterization of microbial communities in sediments of the South Yellow Sea[J]. Journal of Oceanology and Limnology, 2021, 39(3): 846-864

Characterization of microbial communities in sediments of the South Yellow Sea

Ye CHEN1,2,3, Siqi LI1,2,3, Xiaoqing XU3,4, Manman MA2,3,4, Tiezhu MI2,3,4, Yu ZHEN2,3,4, Zhigang YU2,5
1 College of Marine Life Science, Ocean University of China, Qingdao 266003, China;
2 Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology(Qingdao), Qingdao 266237, China;
3 Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China;
4 College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China;
5 Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education/Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China
Abstract:
Illumina sequencing and quantitative PCR (qPCR) based on the 16S ribosomal RNA (rRNA) gene were conducted to characterize the vertical distribution of bacterial and archaeal communities in the sediments of two sites from the South Yellow Sea. Both bacterial and archaeal communities showed a clear stratified distribution with sediment depth. The microbial communities in the upper layers were distinct from those in the deeper layers; the relative abundances of sequences of Thaumarchaeota, Gammaproteobacteria, and Actinobacteria were higher in the upper than in the deeper sediments, whereas the sequences of Bathyarchaeia, Lokiarchaeota, Euryarchaeota, Chloroflexi, and Deltaproteobacteria were relatively more abundant in the deeper sediments. Sediment depth and total organic carbon (TOC) can significantly influence both the bacterial and archaeal communities. Furthermore, bacterial and archaeal groups potentially involved in nitrogen, sulfur, and methane metabolism were detected in both sites. In our study, both ammonia-oxidizing bacteria (Nitrospira) and ammonia-oxidizing archaea (Candidatus Nitrosopumilus) were responsible for ammonia oxidization. Additionally, sulfur-reducing bacteria SEEP-SRB1 forming consortia with anaerobic methane-oxidizing archaea ANME-2a-2b were capable of anaerobic methane oxidation (AOM) in the 3400-02 sediment samples.
Key words:    microbial community|16S rRNA gene|high-throughput sequencing|South Yellow Sea|sediment   
Received: 2020-03-03   Revised: 2020-04-06
Tools
PDF (2111 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Ye CHEN
Articles by Siqi LI
Articles by Xiaoqing XU
Articles by Manman MA
Articles by Tiezhu MI
Articles by Yu ZHEN
Articles by Zhigang YU
References:
Bagchi A, Roy D, Roy P. 2005. Homology modeling of a transcriptional regulator SoxR of the Lithotrophic sulfur oxidation (Sox) operon in α-Proteobacteria. Journal of Biomolecular Structure and Dynamics, 22(5):571-577, https://doi.org/10.1080/07391102.2005.10507027.
Berg C, Listmann L, Vandieken V, Vogts A, Jürgens K. 2014.Chemoautotrophic growth of ammonia-oxidizing Thaumarchaeota enriched from a pelagic redox gradient in the Baltic Sea. Frontiers in Microbiology, 5:786, https://doi.org/10.3389/fmicb.2014.00786.
Berlanga M, Aas J A, Paster B J, Boumenna T, Dewhirst F E, Guerrero R. 2008. Phylogenetic diversity and temporal variation in the Spirochaeta populations from two Mediterranean microbial mats. International Microbiology, 11(4):267-274, https://doi.org/10.2436/20.1501.01.71.
Biddle J F, Lipp J S, Lever M A, Lloyd K G, Sorensen K B, Anderson R, Fredricks H F, Elvert M, Kelly T J, Schrag D P, Sogin M L, Brenchley J E, Teske A, House C H, Hinrichs K U. 2006. Heterotrophic Archaea dominate sedimentary subsurface ecosystems off Peru. Proceedings of the National Academy of Sciences of the United States of America, 103(10):3 846-3 851, https://doi.org/10.1073/pnas.0600035103.
Boetius A, Ravenschlag K, Schubert C J, Rickert D, Widdel F, Gieseke A, Amann R, Jørgensen B B, Witte U, Pfannkuche O. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407(6804):623-626, https://doi.org/10.1038/35036572.
Bokulich N A, Subramanian S, Faith J J, Gevers D, Gordon J I, Knight R, Mills D A, Caporaso J G. 2013. Qualityfiltering vastly improves diversity estimates from Illumina amplicon sequencing. Nature Methods, 10(1):57-59, https://doi.org/10.1038/nmeth.2276.
Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. 2008.Mesophilic crenarchaeota:proposal for a third archaeal phylum, the Thaumarchaeota. Nature Reviews Microbiology, 6(3):245-252, https://doi.org/10.1038/nrmicro1852.
Caporaso J G, Lauber C L, Walters W A, Berg-Lyons D, Huntley J, Fierer N, Owens S M, Betley J, Fraser L, Bauer M, Gormley N, Gilbert J A, Smith G, Knight R. 2012.Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. The ISME Journal, 6(8):1 621-1 624, https://doi.org/10.1038/ismej.2012.8.
Coolen M J L, Hopmans E C, Rijpstra W I C, Muyzer G, Schouten S, Volkman J K, Damsté J S S. 2004. Evolution of the methane cycle in Ace Lake (Antarctica) during the Holocene:response of methanogens and methanotrophs to environmental change.Organic Geochemistry, 35(10):1 151-1 167, https://doi.org/10.1016/j.orggeochem.2004.06.009.
Covault J A, Fildani A. 2014. Continental shelves as sediment capacitors or conveyors:source-to-sink insights from the tectonically active Oceanside shelf, southern California, USA. Geological Society, London, Memoirs, 41(1):315-326, https://doi.org/10.1144/M41.23.
Cowie G L, Hedges J I. 1994. Biochemical indicators of diagenetic alteration in natural organic matter mixtures.Nature, 369(6478):304-307, https://doi.org/10.1038/369304a0.
DeLong E F. 1992. Archaea in coastal marine environments.Proceedings of the National Academy of Sciences of the United States of America, 89(12):5 685-5 689, https://doi.org/10.1073/pnas.89.12.5685.
Devereux R, Mosher J J, Vishnivetskaya T A, Brown S D, Beddick D L Jr, Yates D F, Palumbo A V. 2015. Changes in northern Gulf of Mexico sediment bacterial and archaeal communities exposed to hypoxia. Geobiology, 13(5):478-493, https://doi.org/10.1111/gbi.12142.
Dharamshi J E, Tamarit D, Eme L, Stairs C W, Martijn J, Homa F, Jørgensen S L, Spang A, Ettema T J G. 2020. Marine sediments illuminate Chlamydiae diversity and evolution.Current Biology, 30(6):1 032-1 048.e7, https://doi.org/10.1016/j.cub.2020.02.016.
Dong Y, Zhao Y, Zhang W Y, Li Y, Zhou F, Liu C G, Wu Y, Liu S M, Zhang W C, Xiao T. 2014. Bacterial diversity and community structure in the East China Sea by 454 sequencing of the 16S rRNA gene. Chinese Journal of Oceanology and Limnology, 32(3):527-541, https://doi.org/10.1007/s00343-014-3215-2.
Durbin A M, Teske A. 2012. Archaea in organic-lean and organic-rich marine subsurface sediments:an environmental gradient reflected in distinct phylogenetic lineages. Frontiers in Microbiology, 3:168, https://doi.org/10.3389/fmicb.2012.00168.
Evans P N, Parks D H, Chadwick G L, Robbins S J, Orphan V J, Golding S D, Tyson G W. 2015. Methane metabolism in the archaeal phylum Bathyarchaeota revealed by genomecentric metagenomics. Science, 350(6259):434-438, https://doi.org/10.1126/science.aac7745.
Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas S G, González J M, Pedrós-Alió C. 2013. Ecology of marine Bacteroidetes:a comparative genomics approach.The ISME Journal, 7(5):1 026-1 037, https://doi.org/10.1038/ismej.2012.169.
Fuhrman J A, Davis A A. 1997. Widespread archaea and novel bacteria from the deep sea as shown by 16S rRNA gene sequences. Marine Ecology Progress Series, 150(1):275-285, https://doi.org/10.3354/meps150275.
Fuhrman J A. 2009. Microbial community structure and its functional implications. Nature, 459(7244):193-199, https://doi.org/10.1038/nature08058.
Gauthier M E A, Watson J R, Degnan S M. 2016. Draft genomes shed light on the dual bacterial symbiosis that dominates the microbiome of the coral reef sponge Amphimedon queenslandica. Frontiers in Marine Science, 3:196, https://doi.org/10.3389/fmars.2016.00196.
Gold T. 1992. The deep, hot biosphere. Proceedings of the National Academy of Sciences of the United States of America, 89(13):6 045-6 049, https://doi.org/10.1073/pnas.89.13.6045.
Graham D E, Wallenstein M D, Vishnivetskaya T A, Waldrop M P, Phelps T J, Pfiffner S M, Onstott T C, Whyte L G, Rivkina E M, Gilichinsky D A, Elias D A, Mackelprang R, VerBerkmoes N C, Hettich R L, Wagner D, Wullschleger S D, Jansson J K. 2012. Microbes in thawing permafrost:the unknown variable in the climate change equation. The ISME Journal, 6(4):709-712, https://doi.org/10.1038/ismej.2011.163.
He H, Zhen Y, Mi T Z, Fu L L, Yu Z G. 2018. Ammoniaoxidizing archaea and bacteria differentially contribute to ammonia oxidation in sediments from adjacent waters of Rushan Bay, China. Frontiers in Microbiology, 9:116, https://doi.org/10.3389/fmicb.2018.00116.
He H, Zhen Y, Mi T Z, Yu Z G. 2016a. Community composition and abundance of ammonia-oxidizing archaea in sediments from the Changjiang Estuary and its adjacent area in the East China Sea. Geomicrobiology Journal, 33(5):416-425, https://doi.org/10.1080/01490451.2014.9 86695.
He Y, Li M, Perumal V, Feng X, Fang J, Xie J, Sievert S M, Wang F. 2016b. Genomic and enzymatic evidence for acetogenesis among multiple lineages of the archaeal phylum Bathyarchaeota widespread in marine sediments.Nature Microbiology, 1(6):16 035, https://doi.org/10.1038/nmicrobiol.2016.35.
Ho A, Angel R, Veraart A J, Daebeler A, Jia Z J, Kim S Y, Kerckhof F M, Boon N, Bodelier P L E. 2016. Biotic interactions in microbial communities as modulators of biogeochemical processes:methanotrophy as a model system. Frontiers in Microbiology, 7:1 285, https://doi.org/10.3389/fmicb.2016.01285.
Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche M, Colwell F S, Nealson K H, Horikoshi K, D'Hondt S, Jørgensen B B. 2006.Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin. Proceedings of the National Academy of Sciences of the United States of America, 103(8):2 815-2 820, https://doi.org/10.1073/pnas.0511033103.
Jiang L J, Zheng Y P, Chen J Q, Xiao X, Wang F P. 2011.Stratification of archaeal communities in shallow sediments of the Pearl River Estuary, Southern China.Antonie Van Leeuwenhoek, 99(4):739-751, https://doi.org/10.1007/s10482-011-9548-3.
Karner M B, DeLong E F, Karl D M. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature, 409(6819):507-510, https://doi.org/10.1038/35054051.
Lazar C S, Baker B J, Seitz K, Hyde A S, Dick G J, Hinrichs K U, Teske A P. 2016. Genomic evidence for distinct carbon substrate preferences and ecological niches of Bathyarchaeota in estuarine sediments. Environmental Microbiology, 18(4):1 200-1 211, https://doi.org/10.1111/1462-2920.13142.
Lee C K, Barbier B A, Bottos E M, McDonald I R, Cary S C. 2012. The inter-valley soil comparative survey:the ecology of Dry Valley edaphic microbial communities.The ISME Journal, 6(5):1 046-1 057, https://doi.org/10.1038/ismej.2011.170.
Lenk S, Arnds J, Zerjatke K, Musat N, Amann R, Mußmann M. 2011. Novel groups of Gammaproteobacteria catalyse sulfur oxidation and carbon fixation in a coastal, intertidal sediment. Environmental Microbiology, 13(3):758-774, https://doi.org/10.1111/j.1462-2920.2010.02380.x.
Lentini V, Gugliandolo C, Bunk B, Overmann J, Maugeri T L. 2014. Diversity of prokaryotic community at a shallow marine hydrothermal site elucidated by Illumina sequencing technology. Current Microbiology, 69(4):457-466, https://doi.org/10.1007/s00284-014-0609-5.
Lin X J, Handley K M, Gilbert J A, Kostka J E. 2015. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. The ISME Journal, 9(12):2 740-2 744, https://doi.org/10.1038/ismej.2015.77.
Liu C S, Zhao D F, Yan L H, Wang A J, Gu Y Y, Lee D J. 2015a.Elemental sulfur formation and nitrogen removal from wastewaters by autotrophic denitrifiers and anammox bacteria. Bioresource Technology, 191:332-336, https://doi.org/10.1016/j.biortech.2015.05.027.
Liu J W, Liu X S, Wang M, Qiao Y L, Zheng Y F, Zhang X H. 2015b. Bacterial and archaeal communities in sediments of the North Chinese Marginal Seas. Microbial Ecology, 70(1):105-117, https://doi.org/10.1007/s00248-014-0553-8.
Liu Y C, Whitman W B. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Annals of the New York Academy of Sciences, 1125(1):171-189, https://doi.org/10.1196/annals.1419.019.
Lloyd K G, Schreiber L, Petersen D G, Kjeldsen K U, Lever M A, Steen A D, Stepanauskas R, Richter M, Kleindienst S, Lenk S, Schramm A, Jørgensen B B. 2013. Predominant archaea in marine sediments degrade detrital proteins.Nature, 496(7444):215-218, https://doi.org/10.1038/nature12033.
Lovley D R, Klug M J. 1983. Sulfate reducers can outcompete methanogens at freshwater sulfate concentrations. Applied and Environmental Microbiology, 45(1):187-192, https://doi.org/10.1128/AEM.45.1.187-192.1983.
Lozada M, Marcos M S, Commendatore M G, Gil M N, Dionisi H M. 2014. The bacterial community structure of hydrocarbon-polluted marine environments as the basis for the definition of an ecological index of hydrocarbon exposure. Microbes and Environments, 29(3):269-276, https://doi.org/10.1264/jsme2.ME14028.
Magoč T, Salzberg S L. 2011. FLASH:fast length adjustment of short reads to improve genome assemblies.Bioinformatics, 27(21):2 957-2 963, https://doi.org/10.1093/bioinformatics/btr507.
Mahmoudi N, Robeson M S, Castro H F, Fortney J L, Techtmann S M, Joyner D C, Paradis C J, Pfiffner S M, Hazen T C. 2015. Microbial community composition and diversity in Caspian Sea sediments. FEMS Microbiology Ecology, 91(1):1-11, https://doi.org/10.1093/femsec/fiu013.
Niemann H, Lösekann T, De Beer D, Elvert M, Nadalig T, Knittel K, Amann R, Sauter E J, Schlüter M, Klages M, Foucher J P, Boetius A. 2006. Novel microbial communities of the Haakon Mosby mud volcano and their role as a methane sink. Nature, 443(7113):854-858, https://doi.org/10.1038/nature05227.
Nunoura T, Takaki Y, Kazama H, Hirai M, Ashi J, Imachi H, Takai K. 2012. Microbial diversity in deep-sea methane seep sediments presented by SSU rRNA gene tag sequencing. Microbes and Environments, 27(4):382-390, https://doi.org/10.1264/jsme2.ME12032.
Offre P, Spang A, Schleper C. 2013. Archaea in biogeochemical cycles. Annual Review of Microbiology, 67(1):437-457, https://doi.org/10.1146/annurev-micro-092412-155614.
Oni O E, Schmidt F, Miyatake T, Kasten S, Witt M, Hinrichs K U, Friedrich M W. 2015. Microbial communities and organic matter composition in surface and subsurface sediments of the Helgoland mud area, North Sea.Frontiers in Microbiology, 6:1 290, https://doi.org/10.3389/fmicb.2015.01290.
Orphan V J, House C H, Hinrichs K U, McKeegan K D, DeLong E F. 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments.
Proceedings of the National Academy of Sciences of the United States of America, 99(11):7 663-7 668, https://doi.org/10.1073/pnas.072210299.
Pala C, Molari M, Nizzoli D, Bartoli M, Viaroli P, Manini E. 2018. Environmental drivers controlling bacterial and archaeal abundance in the sediments of a Mediterranean lagoon ecosystem. Current Microbiology, 75(9):1 147-1 155, https://doi.org/10.1007/s00284-018-1503-3.
Peiffer J A, Spor A, Koren O, Jin Z, Tringe S G, Dangl J L, Buckler E S, Ley R E. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions.
Proceedings of the National Academy of Sciences of the United States of America, 110(16):6 548-6 553, https://doi.org/10.1073/pnas.1302837110.
Porat I, Vishnivetskaya T A, Mosher J J, Brandt C C, Yang Z K, Brooks S C, Liang L Y, Drake M M, Podar M, Brown S D, Palumbo A V. 2010. Characterization of archaeal community in contaminated and uncontaminated surface stream sediments. Microbial Ecology, 60(4):784-795, https://doi.org/10.1007/s00248-010-9734-2.
Poulsen M, Schwab C, Jensen B B, Engberg R M, Spang A, Canibe N, Højberg O, Milinovich G, Fragner L, Schleper C, Weckwerth W, Lund P, Schramm A, Urich T. 2013.Methylotrophic methanogenic Thermoplasmata implicated in reduced methane emissions from bovine rumen. Nature Communications, 4:1 428, https://doi.org/10.1038/ncomms2847.
Qiao Y L, Liu J W, Zhao M X, Zhang X H. 2018. Sediment depth-dependent spatial variations of bacterial communities in mud deposits of the eastern China marginal seas. Frontiers in Microbiology, 9:1 128, https://doi.org/10.3389/fmicb.2018.01128.
Reed A J, Lutz R A, Vetriani C. 2006. Vertical distribution and diversity of bacteria and archaea in sulfide and methanerich cold seep sediments located at the base of the Florida Escarpment. Extremophiles, 10(3):199-211, https://doi.org/10.1007/s00792-005-0488-6.
Robador A, Müller A L, Sawicka J E, Berry D, Hubert C R J, Loy A, Jørgensen B B, Brüchert V. 2016. Activity and community structures of sulfate-reducing microorganisms in polar, temperate and tropical marine sediments. The ISME Journal, 10(4):796-809, https://doi.org/10.1038/ismej.2015.157.
Säwström C, Serrano O, Rozaimi M, Lavery P S. 2016.Utilization of carbon substrates by heterotrophic bacteria through vertical sediment profiles in coastal and estuarine seagrass meadows. Environmental Microbiology Reports, 8(5):582-589, https://doi.org/10.1111/1758-2229.12406.
Schippers A, Kock D, Höft C, Köweker G, Siegert M. 2012.Quantification of microbial communities in subsurface marine sediments of the Black Sea and off Namibia.Frontiers in Microbiology, 3:16, https://doi.org/10.3389/fmicb.2012.00016.
Schippers A, Neretin L N. 2006. Quantification of microbial communities in near-surface and deeply buried marine sediments on the Peru continental margin using real-time PCR. Environmental Microbiology, 8(7):1 251-1 260, https://doi.org/10.1111/j.1462-2920.2006.01019.x.
Schönheit P, Kristjansson J K, Thauer R K. 1982. Kinetic mechanism for the ability of sulfate reducers to outcompete methanogens for acetate. Archives of Microbiology, 132(3):285-288, https://doi.org/10.1007/BF00407967.
Shehab N, Li D, Amy G L, Logan B E, Saikaly P E. 2013.Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealedoff reactors. Applied Microbiology and Biotechnology, 97(22):9 885-9 895, https://doi.org/10.1007/s00253-013-5025-4.
Shi X F, Shen S X, Yi H I, Chen Z H, Meng Y. 2003. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea. Chinese Science Bulletin, 48(S1):1-7, https://doi.org/10.1007/BF02900933.
Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, Streit W, Stahl D A, Wagner M, Schleper C. 2010. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends in Microbiology, 18(8):331-340, https://doi.org/10.1016/j.tim.2010.06.003.
Spring S, Riedel T, Spröer C, Yan S, Harder J, Fuchs B M. 2013. Taxonomy and evolution of bacteriochlorophyll acontaining members of the OM60/NOR5 clade of marine gammaproteobacteria:description of Luminiphilus syltensis gen. nov., sp. nov., reclassification of Haliea rubra as Pseudohaliea rubra gen. nov., comb. nov., and emendation of Chromatocurvus halotolerans. BMC Microbiology, 13(1):118, https://doi.org/10.1186/1471-2180-13-118.
Stahl D A, de la Torre J R. 2012. Physiology and diversity of ammonia-oxidizing archaea. Annual Review of Microbiology, 66(1):83-101, https://doi.org/10.1146/annurev-micro-092611-150128.
Sun W M, Xiao E Z, Pu Z L, Krumins V, Dong Y R, Li B Q, Hu M. 2018. Paddy soil microbial communities driven by environment- and microbe-microbe interactions:a case study of elevation-resolved microbial communities in a rice terrace. Science of the Total Environment, 612:884-893, https://doi.org/10.1016/j.scitotenv.2017.08.275.
Suzuki D, Li Z L, Cui X X, Zhang C F, Katayama A. 2014.Reclassification of Desulfobacterium anilini as Desulfatiglans anilini comb. nov. within Desulfatiglans gen. nov., and description of a 4-chlorophenol-degrading sulfate-reducing bacterium, Desulfatiglans parachlorophenolica sp. nov. International Journal of Systematic and Evolutionary Microbiology, 64(Pt 9):3 081-3 086, https://doi.org/10.1099/ijs.0.064360-0.
Timmers P H A, Suarez-Zuluaga D A, van Rossem M, Diender M, Stams A J M, Plugge C M. 2016. Anaerobic oxidation of methane associated with sulfate reduction in a natural freshwater gas source. The ISME Journal, 10(6):1 400-1 412, https://doi.org/10.1038/ismej.2015.213.
Tringe S G, Hugenholtz P. 2008. A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology, 11(5):442-446, https://doi.org/10.1016/j.mib.2008.09.011.
Urakawa H, Yoshida T, Nishimura M, Ohwada K. 2000.Characterization of depth-related population variation in microbial communities of a coastal marine sediment using 16S rDNA-based approaches and quinone profiling.Environmental Microbiology, 2(5):542-554, https://doi.org/10.1046/j.1462-2920.2000.00137.x.
Valentine D L. 2002. Biogeochemistry and microbial ecology of methane oxidation in anoxic environments:a review.Antonie van Leeuwenhoek, 81(1-4):271-282, https://doi.org/10.1023/A:1020587206351.
Varon-Lopez M, Dias A C F, Fasanella C C, Durrer A, Melo I S, Kuramae E E, Andreote F D. 2014. Sulphur-oxidizing and Sulphate-reducing communities in Brazilian mangrove sediments. Environmental Microbiology, 16(3):845-855, https://doi.org/10.1111/1462-2920.12237.
Wakeham S G, Lee C, Hedges J I, Hernes P J, Peterson M J. 1997. Molecular indicators of diagenetic status in marine organic matter. Geochimica et Cosmochimica Acta, 61(24):5 363-5 369, https://doi.org/10.1016/S0016-7037(97)00312-8.
Walsh J J. 1991. Importance of continental margins in the marine biogeochemical cycling of carbon and nitrogen.Nature, 350(6313):53-55, https://doi.org/10.1038/350053a0.
Wang Y, Sheng H F, He Y, Wu J Y, Jiang Y X, Tam N F Y, Zhou H W. 2012. Comparison of the levels of bacterial diversity in freshwater, intertidal wetland, and marine sediments by using millions of Illumina tags. Applied and Environmental Microbiology, 78(23):8 264-8 271, https://doi.org/10.1128/AEM.01821-12.
Wilms R, Kopke B, Sass H, Chang T S, Cypionka H, Engelen B. 2006. Deep biosphere-related bacteria within the subsurface of tidal flat sediments. Environmental Microbiology, 8(4):709-719, https://doi.org/10.1111/j.1462-2920.2005.00949.x.
Xiao K Q, Beulig F, Røy H, Jørgensen B B, Risgaard-Petersen N. 2018. Methylotrophic methanogenesis fuels cryptic methane cycling in marine surface sediment. Limnology and Oceanography, 63(4):1 519-1 527, https://doi.org/10.1002/lno.10788.
Xiong J B, Ye X S, Wang K, Chen H P, Hu C J, Zhu J L, Zhang D M. 2014. Biogeography of the sediment bacterial community responds to a nitrogen pollution gradient in the East China Sea. Applied and Environmental Microbiology, 80(6):1 919-1 925, https://doi.org/10.1128/AEM.03731-13.
Yamada T, Sekiguchi Y, Hanada S, Imachi H, Ohashi A, Harada H, Kamagata Y. 2006. Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi. International Journal of Systematic and Evolutionary Microbiology, 56(6):1 331-1 340, https://doi.org/10.1099/ijs.0.64169-0.
Yu S L, Yao P, Liu J W, Zhao B, Zhang G L, Zhao M X, Yu Z G, Zhang X H. 2016. Diversity, abundance, and niche differentiation of ammonia-oxidizing prokaryotes in mud deposits of the eastern China marginal Seas. Frontiers in Microbiology, 7:137, https://doi.org/10.3389/fmicb.2016.00137.
Zhang Y, Wang X G, Zhen Y, Mi T Z, He H, Yu Z G. 2017.Microbial diversity and community structure of sulfatereducing and sulfur-oxidizing bacteria in sediment cores from the East China Sea. Frontiers in Microbiology, 8:2133, https://doi.org/10.3389/fmicb.2017.02133.
Zhou Z C, Meng H, Liu Y, Gu J D, Li M. 2017. Stratified bacterial and archaeal community in mangrove and intertidal wetland mudflats revealed by high throughput 16S rRNA gene sequencing. Frontiers in Microbiology, 8:2148, https://doi.org/10.3389/fmicb.2017.02148.
Zhu D C, Tanabe S H, Yang C, Zhang W M, Sun J Z. 2013.Bacterial community composition of South China Sea sediments through pyrosequencing-based analysis of 16S rRNA genes. PLoS One, 8(10):e78501, https://doi.org/10.1371/journal.pone.0078501.
Zhuang G C, Heuer V B, Lazar C S, Goldhammer T, Wendt J, Samarkin V A, Elvert M, Teske A P, Joye S B, Hinrichs K U. 2018. Relative importance of methylotrophic methanogenesis in sediments of the western Mediterranean Sea. Geochimica et Cosmochimica Acta, 224:171-186, https://doi.org/10.1016/j.gca.2017.12.024.
Zinger L, Amaral-Zettler L A, Fuhrman J A, Horner-Devine M C, Huse S M, Welch D B M, Martiny J B H, Sogin M, Boetius A, Ramette A. 2011. Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS One, 6(9):e24570, https://doi.org/10.1371/journal.pone.0024570.
Zonneveld K A F, Versteegh G J M, Kasten S, Eglinton T I, Emeis K C, Huguet C, Koch B P, de Lange G J, de Leeuw J W, Middelburg J J, Mollenhauer G, Prahl F G, Rethemeyer J, Wakeham S G. 2010. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record. Biogeosciences, 7(2):483-511, https://doi.org/10.5194/bg-7-483-2010.
Copyright © Haiyang Xuebao