Cite this paper:
Xiaoyong ZHANG, Yiyang LI, Zonghe YU, Xiao LIANG, Shuhua QI. Phylogenetic diversity and bioactivity of culturable deepsea-derived fungi from Okinawa Trough[J]. Journal of Oceanology and Limnology, 2021, 39(3): 892-902

Phylogenetic diversity and bioactivity of culturable deepsea-derived fungi from Okinawa Trough

Xiaoyong ZHANG1,2, Yiyang LI1, Zonghe YU1, Xiao LIANG2, Shuhua QI2,3
1 Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China;
2 Key Laboratory of Tropical Marine Bio-resources and Ecology/RNAM Center for Marine Microbiology/Guangdong Key Laboratory of Marine Material Medical, South China sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China
Abstract:
Deep-sea sediments are now recognized as a home for rich and largely microbial community. Recently, it has been believed in an increasing number of studies that bacteria could be abundant in deepsea sediments of many types; however, fungi in deep-sea sediments remain relatively unknown. The phylogenetic diversity and bioactivity of culturable deep-sea-derived fungi from Okinawa Trough sediments were investigated in traditional method combined with fungal identification of molecular biology in this study. A total of 76 isolates belonged to 15 fungal taxa were recovered in a harsh condition of low nutrient and low temperature, indicating that the fungal communities in deep-sea sediments from Okinawa Trough were relatively abundant and diversified. Aspergillus, Cladosporium, and Penicillium were the dominant fungal genera, while Mycosphaerella, Purpureocillium, and Schizophyllum were relatively rare in the deep-sea sediments from Okinawa Trough. Among the six genera recovered, Mycosphaerella was firstly recovered from deep-sea sediments in this study. Moreover, about 75% of the extracts from the 15 fungal representative isolates displayed distinct bioactivity against at least one indicator bacterium or marine macrofouler, emphasizing the potentials of these deep-sea-derived fungi from Okinawa Trough as producers of bioactive metabolites. Notably, isolates Cladosporium oxysporum SCSIO z001 and Penicillium citrinum SCSIO z049 displayed a wide spectrum of bioactivities, isolates Cladosporium cladosporioides SCSIO z015, Cladosporium sphaerospermum SCSIO z030, and Penicillium verruculosum SCSIO z007 exhibited a strong anti-bacterial-growth activity, and isolate Penicillium chrysogenum SCSIO z062 displayed a strong anti-larval-settlement activity. These results suggest that these isolates deserved further study as potential sources of novel bioactive metabolites.
Key words:    deep-sea-derived fungi|phylogenetic diversity|bioactivity|Okinawa Trough|hydrothermal vents   
Received: 2020-01-29   Revised: 2020-04-02
Tools
PDF (397 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Xiaoyong ZHANG
Articles by Yiyang LI
Articles by Zonghe YU
Articles by Xiao LIANG
Articles by Shuhua QI
References:
Beals E W. 1984. Bray-Curtis ordination:an effective strategy for analysis of multivariate ecological data. Adv. Ecol.Res., 14:1-55.
Bovio E, Garzoli L, Poli A, Luganini A, Villa P, Musumeci R, McCormack G P, Cocuzza C E, Gribaudo G, Mehiri M, Varese G C. 2019. Marine fungi from the sponge Grantia compressa:biodiversity, chemodiversity, and biotechnological potential. Mar. Drugs, 17(4):220.
Bryan P J, Kreider J L, Qian P Y. 1998. Settlement of the serpulid polychaete Hydroides elegans (Haswell) on the arborescent bryozoan Bugula neritina (L.):evidence of a chemically mediated relationship. J. Exp. Mar. Biol.Ecol., 220(2):171-190.
Burgaud G, Le Calvez T, Arzur D, Vandenkoornhuyse P, Barbier G. 2009. Diversity of culturable marine filamentous fungi from deep-sea hydrothermal vents.Environ. Microbiol., 11(6):1 588-1 600.
Burmølle M, Webb J S, Rao D, Hansen L H, Sørensen S J, Kjelleberg S. 2006. Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl. Environ. Microbiol., 72(6):3 916-3 923.
Cathrine S J, Raghukumar C. 2009. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India.Mycol. Res., 113(1):100-109.
Chen M, Zheng Y Y, Chen Z Q, Shen N X, Shen L, Zhang F M, Zhou X J, Wang C Y. 2019. NaBr-induced production of brominated azaphilones and related tricyclic polyketides by the marine-derived fungus Penicillium janthinellum HK1-6. J. Nat. Prod., 82(2):368-374.
Chen W H, Liu H Y, Long J Y, Tao H M, Lin X P, Liao S R, Yang B, Zhou X F, Liu Y H, Wang J F. 2020.Asperpentenone A, A novel polyketide isolated from the deep-sea derived fungus Aspergillus sp. SCSIO 41024.Phytochem. Lett., 35:99-102.
Damare S, Raghukumar C. 2008. Fungi and macroaggregation in deep-sea sediments. Microb. Ecol., 56:168-177.
Danielsen L, Thürmer A, Meinick P, Buée M, Morin E, Martin F, Pilate G, Daniel R, Polle A, Reich M. 2012. Fungal soil communities in a young transgenic poplar plantation form a rich reservoir for fungal root communities. Ecol. Evol., 2(8):1 935-1 948.
Dash S, Jin C L, Lee O O, Xu Y, Qian P Y. 2009. Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria. J. Ind.Microbiol. Biotechnol., 36(8):1 047-1 056.
D'Souza F, Bruin A, Biersteker R, Donnelly G, Klijnstra J, Rentrop C, Willemsen P. 2010. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials. J. Ind. Microbiol.Biotechnol., 37(4):363-370.
Glasby G P, Notsu K. 2003. Submarine hydrothermal mineralization in the Okinawa Trough, SW of Japan:an overview. Ore Geol. Rev., 23(3-4):299-339.
Han W R, Cai J, Zhong W M, Xu G M, Wang F Z, Tian X P, Zhou X J, Liu Q C, Liu Y H, Wang J F. 2020. Protein tyrosine phosphatase 1B (PTP1B) inhibitors from the deep-sea fungus Penicillium chrysogenum SCSIO 07007.Bioorg. Chem., 96:103646.
Hao W J, Wichels A, Fuchs B, Tang X X, Gerdts G. 2019.Bacterial community succession in response to dissolved organic matter released from live jellyfish. J. Oceanol.Limnol., 37(4):1 229-1 244.
Hewage R T, Aree T, Mahidol C, Ruchirawat S, Kittakoop P. 2014. One strain-many compounds (OSMAC) method for production of polyketides, azaphilones, and an isochromanone using the endophytic fungus Dothideomycete sp. Phytochemistry, 108:87-94.
Hou X M, Li Y Y, Shi W W, Fang Y W, Chao R, Gu Y C, Wang C Y, Shao C L. 2019. Integrating molecular networking and 1H NMR to target the isolation of chrysogeamides from a library of marine-derived Penicillium Fungi. J.Org. Chem., 84(3):1 228-1 237.
Hu L W, Taujale R, Liu F, Song J Z, Yin Q S, Zhang Y L, Guo J H, Yin Y B. 2016. Draft genome sequence of Talaromyces verruculosus ("Penicillium verruculosum") strain TS63-9, a fungus with great potential for industrial production of polysaccharide-degrading enzymes. J. Biotechnol., 219:5-6.
Huang Y H, Sun C J, Yang G P, Yue X A, Jiang F H, Cao W, Yin X F, Guo C N, Niu J H, Ding H B. 2020. Geochemical characteristics of hadal sediment in the northern Yap Trench. J. Oceanol. Limnol., 38(3):650-664, https://doi.org/10.1007/s00343-019-9010-3.
Inagaki F, Takai K, Nealson K H, Horikoshi K. 2004.Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilonProteobacteria isolated from Okinawa Trough hydrothermal sediments. Int. J. Syst. Evol. Microbiol., 54(5):1 477-1 482.
Kim D H, Kim S H, Kwon S W, Lee J K, Hong S B. 2013.Fungal diversity of rice straw for Meju fermentation. J.Microbiol. Biotechnol., 23(12):1 654-1 663.
Lara E, Moreira D, López-García P. 2010. The environmental Clade LKM11 and Rozella form the deepest branching clade of Fungi. Protist, 161(1):116-121.
Le Calvez T, Burgaud G, Mahé S, Barbier G, Vandenkoornhuyse P. 2009. Fungal diversity in deep-sea hydrothermal ecosystems. Appl. Environ. Microbiol., 75(20):6 415-6 421.
Li H L, Li X M, Mándi A, Antus S, Li X, Zhang P, Liu Y, Kurtán T, Wang B G. 2017. Characterization of Cladosporols from the marine algal-derived endophytic fungus Cladosporium cladosporioides EN-399 and configurational revision of the previously reported cladosporol derivatives. J. Org. Chem., 82(19):9 946-9 954.
Li J L, Jiang X, Liu X P, He C W, Di Y X, Lu S J, Huang H L, Lin B, Wang D, Fan B Y. 2019. Antibacterial anthraquinone dimers from marine derived fungus Aspergillus sp.Fitoterapia, 133:1-4.
Liu H M, Wang B, Hu X K. 2018. Sediment bacterial communities are more complex in coastal shallow straits than in oceanic deep straits. J. Ocean. Limnol., 36(5):1 643-1 654.
Loges L A, Silva D B, Paulino G V B, Landell M F, Macedo A J. 2020. Polyketides from marine-derived Aspergillus welwitschiae inhibit Staphylococcus aureus virulence factors and potentiate vancomycin antibacterial activity in vivo. Microb. Pathog., 143:104066.
Nagahama T, Hamamoto M, Horikoshi K. 2006. Rhodotorula pacifica sp. nov., a novel yeast species from sediment collected on the deep-sea floor of the north-west Pacific Ocean. Int. J. Syst. Evol. Microbiol., 56(1):295-299.
Nagano Y, Nagahama T. 2012. Fungal diversity in deep-sea extreme environments. Fungal Ecol., 5(4):463-471.
Noman M A, Mamunur R, Islam M S, Hossain M B. 2019.Spatial and seasonal distribution of intertidal macrobenthos with their biomass and functional feeding guilds in the Naf River estuary, Bangladesh. J. Ocean.Limnol., 37(3):1 010-1 023.
Nong X H, Zhang X Y, Xu X Y, Qi S H. 2015. Antifouling compounds from the marine-derived fungus Aspergillus terreus SCSGAF0162. Nat. Prod. Commun., 10(6):1 033-1 034.
Nong X H, Zheng Z H, Zhang X Y, Lu X H, Qi S H. 2013.Polyketides from a marine-derived fungus Xylariaceae sp. Mar. Drugs, 11(5):1 718-1 727.
O'Toole G A, Kolter R. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways:a genetic analysis. Mol.Microbiol., 28(3):449-461.
Pang K L, Overy D P, Jones E B G, da Luz Calado M, Burgaud G, Walker A K, Johnson J A, Kerr R G, Cha H J, Bills G F. 2016. ‘Marine fungi’ and ‘marine-derived fungi’ in natural product chemistry research:toward a new consensual definition. Fungal Biol. Rev., 30(4):163-175.
Pang X Y, Lin X P, Zhou X F, Yang B, Tian X P, Wang J F, Xu S H, Liu Y H. 2020. New quinoline alkaloid and bisabolane-type sesquiterpenoid derivatives from the deep-sea-derived fungus Aspergillus sp. SCSIO06786.Fitoterapia, 140:104406.
Pettit R K. 2011. Culturability and secondary metabolite diversity of extreme microbes:expanding contribution of deep sea and deep-sea vent microbes to natural product discovery. Mar. Biotechnol., 13(1):1-11.
Pirttilä A M, Hirsikorpi M, Kämäräinen T, Jaakola L, Hohtola A. 2001. DNA isolation methods for medicinal and aromatic plants. Plant Mol. Biol. Rep., 19(3):273.
Poli A, Vizzini A, Prigione V, Varese G S. 2018. Basidiomycota isolated from the Mediterranean Sea-phylogeny and putative ecological roles. Fungal Ecol., 36:51-62.
Qi S H, Xu Y, Xiong H R, Qian P Y, Zhang S. 2009. Antifouling and antibacterial compounds from a marine fungus Cladosporium sp. F14. World J. Microbiol. Biotechnol., 25(3):399-406.
Raghukumar C, Damare S R, Singh P. 2010. A review on deepsea fungi:occurrence, diversity and adaptations. Bot.Mar., 53(6):479-492.
Romano S, Jackson S A, Patry S, Dobson A D W. 2018.Extending the "one strain many compounds" (OSMAC) principle to marine microorganisms. Mar. Drugs, 16(7):244.
Sarker S D, Nahar L, Kumarasamy Y. 2007. Microtitre platebased antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods, 42(4):321-324.
Shang Z, Li X M, Meng L M, Li C S, Gao S S, Huang C G, Wang B G. 2012. Chemical profile of the secondary metabolites produced by a deep-sea sediment-derived fungus Penicillium commune SD-118. Chin. J. Ocean.Limnol., 30(2):305-314.
Shao H B, Yang S Y, Wang Q, Guo Y L. 2015. Discriminating hydrothermal and terrigenous clays in the Okinawa Trough, East China Sea:evidences from mineralogy and geochemistry. Chem. Geol., 398:85-96.
Song Q, Li X M, Hu X Y, Li X, Chi L P, Li H L, Wang B G. 2019c. Antibacterial metabolites from Ascidian-derived fungus Aspergillus clavatus AS-107. Phytochem. Lett., 34:30-34.
Song T F, Chen M X, Ge Z W, Chai W Y, Li X C, Zhang Z Z, Lian X Y. 2018. Bioactive penicipyrrodiether A, an adduct of GKK1032 analogue and phenol A derivative, from a marine-sourced fungus Penicillium sp. ZZ380. J. Org.Chem., 83(21):13 395-13 401.
Song Y F, Zhang L J, Luo X X. 2019b. Spatiotemporal distribution of fish eggs and larvae in the Huanghe(Yellow) River estuary, China in 2005-2016. J. Ocean.Limnol., 37(5):1 625-1 637.
Song Y P, Miao F P, Liu X H, Ji N Y. 2019a. Responses of marine-derived Trichoderma fungi to seawater and their potential antagonistic behaviour. J. Ocean. Limnol., 37(2):525-534.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol., 28(10):2 731-2 739.
Tejesvi M V, Kajula M, Mattila S, Pirttilä A M. 2011.Bioactivity and genetic diversity of endophytic fungi in Rhododendron tomentosum Harmaja. Fungal Divers., 47:97-107.
Thiyagarajan V, Harder T, Qiu J W, Qian P Y. 2003. Energy content at metamorphosis and growth rate of the early juvenile barnacle Balanus amphitrite. Mar. Biol., 143(3):543-554.
Thormann K M, Saville R M, Shukla S, Pelletier D A, Spormann A M. 2004. Initial phases of biofilm formation in Shewanella oneidensis MR-1. J. Bacteriol., 186(23):8 096-8 104.
Toledo-Hernández C, Zuluaga-Montero A, Bones-González A, Rodríguez J A, Sabat A M, Bayman P. 2008. Fungi in healthy and diseased sea fans (Gorgonia ventalina):is Aspergillus sydowii always the pathogen? Coral Reefs, 27(3):707-714.
Vanegas J, Muñoz-García A, Pérez-Parra K A, Figueroa-Galvis I, Mestanza O, Polanía J. 2019. Effect of salinity on fungal diversity in the rhizosphere of the halophyte Avicennia germinans from a semi-arid mangrove. Fungal Ecol., 42:100855.
Wang Y N, Shao C L, Zheng C J, Chen Y Y, Wang C Y. 2011.Diversity and antibacterial activities of fungi derived from the gorgonian Echinogorgia rebekka from the South China Sea. Mar. Drugs, 9(8):1 379-1 390.
Wei J C. 1979. Fungi identification manual. Shanghai Science and Technology Press, Shanghai, China. 787p. (in Chinese)
Xu W, Pang K L, Luo Z H. 2014. High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microb. Ecol., 68(4):688-698.
Xu Y, He H P, Schulz S, Liu X, Fusetani N, Xiong H R, Xiao X, Qian P Y. 2010. Potent antifouling compounds produced by marine Streptomyces. Bioresour. Technol., 101(4):1 331-1 336.
Yanagawa K, Breuker A, Schippers A, Nishizawa M, Ijiri A, Hirai M, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K. 2014. Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North Hydrothermal field in the MidOkinawa Trough (Integrated Ocean Drilling Program Expedition 331). Appl. Environ. Microbiol., 80(9):6 126-6 135.
Yu Z S, Zhang B H, Sun W, Zhang F L, Li Z Y. 2013.Phylogenetically diverse endozoic fungi in the South China Sea sponges and their potential in synthesizing bioactive natural products suggested by PKS gene and cytotoxic activity analysis. Fungal Divers., 58:127-141.
Zeng M Y, Cui W X, Zhao Y H, Liu Z Y, Dong S Y, Guo Y. 2008. Antiviral active peptide from oyster. Chin. J. Ocean.Limnol., 26(3):307-312.
Zhan J, Pettway R E, McDonald B A. 2003. The global genetic structure of the wheat pathogen Mycosphaerella graminicola is characterized by high nuclear diversity, low mitochondrial diversity, regular recombination, and gene flow. Fungal Genet. Biol., 38(3):286-297.
Zhang C, Zhang W J, Yin Q J, Li X G, Qi X Q, Wu L F. 2020a.Distinct influence of trimethylamine N-oxide and high hydrostatic pressure on community structure and culturable deep-sea bacteria. J. Oceanol. Limnol., 38(2):364-377, https://doi.org/10.1007/s00343-019-9076-y.
Zhang J, Sun Q L, Zeng Z G, Chen S, Sun L. 2015. Microbial diversity in the deep-sea sediments of Iheya North and Iheya Ridge, Okinawa Trough. Microbiol. Res., 177:43-52.
Zhang P, Wei Q, Yuan X L, Xu K. 2020b. Reported alkaloids produced by marine-derived Penicillium species (covering 2014-2018). Bioorg. Chem., 99:103840, https://doi.org/10.1016/j.bioorg.2020.103840.
Zhang X Y, Hao H L, Lau S C K, Wang H Y, Han Y, Dong L M, Huang R M. 2019. Biodiversity and antifouling activity of fungi associated with two soft corals from the South China Sea. Arch. Microbiol., 201(6):757-767.
Zhang X Y, Tang G L, Xu X Y, Nong X H, Qi S H. 2014.Insights into deep-sea sediment fungal communities from the East Indian Ocean using targeted environmental sequencing combined with traditional cultivation. PLoS One, 9(10):e109118.
Zhang X Y, Wang G H, Xu X Y, Nong X H, Wang J, Amin M, Qi S H. 2016. Exploring fungal diversity in deep-sea sediments from Okinawa Trough using high-throughput Illumina sequencing. Deep Sea Research Part I:Oceanographic Research Papers, 116:99-105.
Zhang X Y, Zhang Y, Xu X Y, Qi S H. 2013. Diverse deep-sea fungi from the South China Sea and their antimicrobial activity. Curr. Microbiol., 67(5):525-530.
Copyright © Haiyang Xuebao