Cite this paper:
Zishuo CHEN, Tao LI, Bingjie YANG, Xuejie JIN, Hualian WU, Jiayi WU, Yandu LU, Wenzhou XIANG. Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield[J]. Journal of Oceanology and Limnology, 2021, 39(3): 1131-1142

Isolation of a novel strain of Cyanobacterium sp. with good adaptation to extreme alkalinity and high polysaccharide yield

Zishuo CHEN1,4, Tao LI1,3, Bingjie YANG1,4, Xuejie JIN1,3, Hualian WU1,3, Jiayi WU1,3, Yandu LU2, Wenzhou XIANG1,3
1 CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Institution of South China Sea Ecology and Environmental Engineering, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou 570228, China;
3 Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou), Guangzhou 511458, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:
The use of high alkaline medium is a feasible way to provide carbon source and prevent biological contamination for the outdoor cultivation of alkaliphilic microalgae and cyanobacteria. A novel cyanobacterial strain was isolated from the open pond of a marine green alga (Picochlorum sp. SCSIO-45015, Sanya, Hainan) and identified as Cyanobacterium sp. SCSIO-45682. The effects of initial sodium bicarbonate (NaHCO3) concentrations on the growth and biochemical composition of Cyanobacterium sp. SCSIO-45682 were investigated. The results demonstrated that Cyanobacterium sp. SCSIO-45682 had good adaptation to 16.8-g/L NaHCO3 (the same concentration of NaHCO3 used in Zarrouk medium for Spirulina). Moreover, the yields of biomass, polysaccharide, chlorophyll a (chl a), and phycocyanin increased under high NaHCO3 concentrations. The maximum final biomass concentration of 2.5 g/L was observed at 8.4-g/L NaHCO3, while the highest intracellular total saccharide content of 49.2% of dry weight (DW) and exopolysaccharide (EPS) concentration of 93 mg/L were achieved at the NaHCO3 concentration of 16.8 g/L. The crude protein content declined under high NaHCO3 concentrations, which provide a possible explanation for the accumulation of polysaccharide. This study shows a good potential of alkaliphilic Cyanobacterium sp. SCSIO-45682 as a polysaccharide feedstock.
Key words:    alkaliphilic cyanobacterium|biochemical composition|Cyanobacterium sp. SCSIO-45682|high sodium bicarbonate (NaHCO3) concentrations|polysaccharide   
Received: 2020-03-05   Revised: 2020-04-22
Tools
PDF (1506 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Zishuo CHEN
Articles by Tao LI
Articles by Bingjie YANG
Articles by Xuejie JIN
Articles by Hualian WU
Articles by Jiayi WU
Articles by Yandu LU
Articles by Wenzhou XIANG
References:
Badger M R, Price G D. 2003. CO2 concentrating mechanisms in cyanobacteria:molecular components, their diversity and evolution. Journal of Experimental Botany, 54(383):609-622, https://doi.org/10.1093/jxb/erg076.
Becker W. 2004. Microalgae in human and animal nutrition.In:Richmond A ed. Handbook of Microalgal Culture:Biotechnology and Applied Phycology. Blackwell Publishing Ltd, London, UK. p.312-351.
Bennett A, Bogorad L. 1973. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58(2):419-435, https://doi.org/10.1083/jcb.58.2.419.
Bradburn M J, Lewis Jr W M, McCutchan Jr J H. 2012.Comparative adaptations of Aphanizomenon and Anabaena for nitrogen fixation under weak irradiance.Freshwater Biology, 57(5):1 042-1 049, https://doi.org/10.1111/j.1365-2427.2012.02765.x.
Chi Z Y, Elloy F, Xie Y X, Hu Y C, Chen S L. 2014. Selection of microalgae and cyanobacteria strains for bicarbonatebased integrated carbon capture and algae production system. Applied Biochemistry and Biotechnology, 172(1):447-457, https://doi.org/10.1007/s12010-013-0515-5.
Chi Z Y, Xie Y X, Elloy F, Zheng Y B, Hu Y C, Chen S L. 2013. Bicarbonate-based integrated carbon capture and algae production system with alkalihalophilic cyanobacterium. Bioresource Technology, 133:513-521, https://doi.org/10.1016/j.biortech.2013.01.150.
Demay J, Bernard C, Reinhardt A, Marie B. 2019. Natural products from cyanobacteria:focus on beneficial activities. Marine Drugs, 17(6):320, https://doi.org/10.3390/md17060320.
Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3):350-356, https://doi.org/10.1021/ac60111a017.
Ehling-Schulz M, Bilger W, Scherer S. 1997. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. Journal of Bacteriology, 179(6):1 940-1 945, https://doi.org/10.1128/jb.179.6.1940-1945.1997.
González-Fernández C, Ballesteros M. 2012. Linking microalgae and cyanobacteria culture conditions and keyenzymes for carbohydrate accumulation. Biotechnology Advances, 30(6):1 655-1 661, https://doi.org/10.1016/j.biotechadv.2012.07.003.
Gris B, Sforza E, Morosinotto T, Bertucco A, La Rocca N. 2017. Influence of light and temperature on growth and high-value molecules productivity from Cyanobacterium aponinum. Journal of Applied Phycology, 29(4):1 781-1 790, https://doi.org/10.1007/s10811-017-1133-3.
Grossmann L, Hinrichs J, Weiss J. 2019. Cultivation and downstream processing of microalgae and cyanobacteria to generate protein-based technofunctional food ingredients. Critical Reviews in Food Science and Nutrition, published Online First, October 2019, https://doi.org/10.1080/10408398.2019.1672137.
Gudmundsdottir A B, Brynjolfsdottir A, Olafsdottir E S, Hardardottir I, Freysdottir J. 2019. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes.International Immunopharmacology, 69:328-336, https://doi.org/10.1016/j.intimp.2019.01.044.
Gudmundsdottir A B, Omarsdottir S, Brynjolfsdottir A, Paulsen B S, Olafsdottir E S, Freysdottir J. 2015.Exopolysaccharides from Cyanobacterium aponinum from the Blue Lagoon in Iceland increase IL-10 secretion by human dendritic cells and their ability to reduce the IL-17+RORγt+/IL-10+FoxP3+ ratio in CD4+ T cells.Immunology Letters, 163(2):157-162, https://doi.org/10.1016/j.imlet.2014.11.008.
Hayashi K, Hayashi T, Kojima I. 1996. A natural sulfated polysaccharide, calcium spirulan, isolated from Spirulina platensis:in vitro and ex vivo evaluation of anti-herpes simplex virus and anti-human immunodeficiency virus activities. AIDS Research and Human Retroviruses, 12(15):1 463-1 471, https://doi.org/10.1089/aid.1996.12.1463.
Ibelings B W, Maberly S C. 1998. Photoinhibition and the availability of inorganic carbon restrict photosynthesis by surface blooms of cyanobacteria. Limnology and Oceanography, 43(3):408-419, https://doi.org/10.4319/lo.1998.43.3.0408.
Karatay S E, Dönmez G. 2011. Microbial oil production from thermophile cyanobacteria for biodiesel production.Applied Energy, 88(11):3 632-3 635, https://doi.org/10.1016/j.apenergy.2011.04.010.
Khan M I, Shin J H, Kim J D. 2018. The promising future of microalgae:current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microbial Cell Factories, 17(1):36, https://doi.org/10.1186/s12934-018-0879-x.
Khozin-Goldberg I, Shrestha P, Cohen Z. 2005. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa.Biochimica et Biophysica Acta (BBA)- Molecular and Cell Biology of Lipids, 1738(1-3):63-71, https://doi.org/10.1016/j.bbalip.2005.09.005.
Kumar A S, Mody K, Jha B. 2007. Bacterial exopolysaccharides-a perception. Journal of Basic Microbiology, 47(2):103-117, https://doi.org/10.1002/jobm.200610203.
Kusama Y, Inoue S, Jimbo H, Takaichi S, Sonoike K, Hihara Y, Nishiyama Y. 2015. Zeaxanthin and echinenone protect the repair of photosystem Ⅱ from inhibition by singlet oxygen in Synechocystis sp. PCC 6803. Plant and Cell Physiology, 56(5):906-916, https://doi.org/10.1093/pcp/pcv018.
Lau N S, Matsui M, Abdullah A A A. 2015. Cyanobacteria:photoautotrophic microbial factories for the sustainable synthesis of industrial products. BioMed Research International, 2015:754934, https://doi.org/10.1155/2015/754934.
Li T, Xu J, Wu H B, Jiang P L, Chen Z S, Xiang W Z. 2019.Growth and biochemical composition of Porphyridium purpureum SCS-02 under different nitrogen concentrations. Marine Drugs, 17(2):124, https://doi.org/10.3390/md17020124.
Liu H J, Blankenship R E. 2019. On the interface of lightharvesting antenna complexes and reaction centers in oxygenic photosynthesis. Biochimica et Biophysica Acta(BBA)-Bioenergetics, 1860(11):148079, https://doi.org/10.1016/j.bbabio.2019.148079.
Ma T, Zuazaga G. 1942. Micro-Kjeldahl determination of nitrogen. A new indicator and an improved rapid method.Industrial & Engineering Chemistry Analytical Edition, 14(3):280-282, https://doi.org/10.1021/i560103a035.
Masamoto K, Furukawa K. 1997. Accumulation of zeaxanthin in cells of the cyanobacterium, Synechococcus sp. strain PCC 7942 grown under high irradiance. Journal of Plant Physiology, 151(3):257-261, https://doi.org/10.1016/S0176-1617(97)80250-7.
Meléndez-Martínez A J. 2019. An overview of carotenoids, apocarotenoids, and vitamin A in agro-food, nutrition, health, and disease. Molecular Nutrition Food Research, 63(15):1801045, https://doi.org/10.1002/mnfr.201801045.
Meng F P, Cui H W, Wang Y J, Li X L. 2018. Responses of a new isolated Cyanobacterium aponinum strain to temperature, pH, CO2 and light quality. Journal of Applied Phycology, 30(3):1 525-1 532, https://doi.org/10.1007/s10811-018-1411-8.
Moro I, Rascio N, La Rocca N, Di Bella M, Andreoli C. 2007.Cyanobacterium aponinum, a new cyanoprokaryote from the microbial mat of Euganean thermal springs (Padua, Italy). Algological Studies, 123:1-15, https://doi.org/10.1127/1864-1318/2007/0123-0001.
Morone J, Alfeus A, Vasconcelos V, Martins R. 2019.Revealing the potential of cyanobacteria in cosmetics and cosmeceuticals-a new bioactive approach. Algal Research, 41:101541, https://doi.org/10.1016/j.algal.2019.101541.
Mourelle M L, Gómez C P, Legido J L. 2017. The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics, 4(4):46, https://doi.org/10.3390/cosmetics4040046.
Nicolaus B, Panico A, Lama L, Romano I, Manca M C, De Giulio A, Gambacorta A. 1999. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry, 52(4):639-647, https://doi.org/10.1016/S0031-9422(99)00202-2.
Pagels F, Guedes A C, Amaro H M, Kijjoa A, Vasconcelos V. 2019. Phycobiliproteins from cyanobacteria:chemistry and biotechnological applications. Biotechnology Advances, 37(3):422-443, https://doi.org/10.1016/j.biotechadv.2019.02.010.
Rieger C, Weiland P. 2006. Prozessstörungen frühzeitig erkennen. Biogas Journal, 4:18-20.
Schipper K, Al Muraikhi M, Alghasal G S H S, Saadaoui I, Bounnit T, Rasheed R, Dalgamouni T, Al Jabri H M S J, Wijffels R H, Barbosa M J. 2019. Potential of novel desert microalgae and cyanobacteria for commercial applications and CO2 sequestration. Journal of Applied Phycology, 31(4):2 231-2 243, https://doi.org/10.1007/s10811-019-01763-3.
Strunecký O, Kopejtka K, Goecke F, Tomasch J, Lukavský J, Neori A, Kahl S, Pieper D H, Pilarski P, Kaftan D, Koblížek M. 2019. High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles, 23(1):35-48, https://doi.org/10.1007/s00792-018-1058-z.
Su C D, Chi Z M, Lu W D. 2007. Optimization of medium and cultivation conditions for enhanced exopolysaccharide yield by marine Cyanothece sp. 113. Chinese Journal of Oceanology and Limnology, 25(4):411-417, https://doi.org/10.1007/s00343-007-0411-3.
Sudo H, Burgess J G, Takemasa H N, Nakamura N, Matsunaga T. 1995. Sulfated exopolysaccharide production by the halophilic cyanobacterium Aphanocapsa halophytia.Current Microbiology, 30(4):219-222, https://doi.org/10.1007/BF00293636.
Viola S, Bailleul B, Yu J F, Nixon P, Sellés J, Joliot P, Wollman F A. 2019. Probing the electric field across thylakoid membranes in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 116(43):21 900-21 906, https://doi.org/10.1073/pnas.1913099116.
Volkmann H, Imianovsky U, Oliveira J L B, Sant'Anna E S. 2008. Cultivation of Arthrospira (spirulina) platensis in desalinator wastewater and salinated synthetic medium:protein content and amino-acid profile. Brazilian Journal of Microbiology 39(1):98-101, https://doi.org/10.1590/S1517-838220080001000022.
Vonshak A, Boussiba S, Abeliovich A, Richmond A. 1983.Production of Spirulina biomass:maintenance of monoalgal culture outdoors. Biotechnology and Bioengineering, 25(2):341-349, https://doi.org/10.1002/bit.260250204.
Winckelmann D, Bleeke F, Bergmann P, Elle C, Klöck G. 2016. Detection of weed algae in open pond cultures of Cyanobacterium aponinum using PAM. International Aquatic Research, 8(1):81-90, https://doi.org/10.1007/s40071-016-0126-1.
Zarrouk C.1966. Contribution à Ľėtude Ďune cyanophycė.Influence de Divers Facteurs physiques et Chimiques Sur la Croissance et la Photosynthėse de Spirulina maxima(Setch. Et Garndner) Geitler. Ph.D. thesis, Faculte des Sciences, Universitė de Paris, Paris.
Zheng W F, Chen C F, Cheng Q P, Wang Y Q, Chu C C. 2006.Oral administration of exopolysaccharide from Aphanothece halophytica (Chroococcales) significantly inhibits influenza virus (H1N1)-induced pneumonia in mice. International Immunopharmacology, 6(7):1 093-1 099, https://doi.org/10.1016/j.intimp.2006.01.020.
Zhu C B, Zhai X Q, Wang J H, Han D S, Li Y H, Xi Y M, Tang Y J, Chi Z Y. 2018. Large-scale cultivation of Spirulina in a floating horizontal photobioreactor without aeration or an agitation device. Applied Microbiology and Biotechnology, 102(20):8 979-8 987, https://doi.org/10.1007/s00253-018-9258-0.
Copyright © Haiyang Xuebao