Cite this paper:
LU Guangyuan, SONG Xiuxian, YU Zhiming, CAO Xihua, YUAN Yongquan. Effects of modified clay flocculation on major nutrients and diatom aggregation during Skeletonema costatum blooms in the laboratory[J]. Journal of Oceanology and Limnology, 2015, 33(4): 1007-1019

Effects of modified clay flocculation on major nutrients and diatom aggregation during Skeletonema costatum blooms in the laboratory

LU Guangyuan1,2, SONG Xiuxian1, YU Zhiming1, CAO Xihua1, YUAN Yongquan1
1 Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences (IOCAS), Qingdao 266071, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Harmful algal blooms (HABs) can elicit several negative effects on aquatic environment (such as depleting the oxygen, blocking the sunlight, destroying the habitats of organisms) and life health (including poisoning/killing marine mammals, birds and human). Among the various control strategies for HABs (physical manipulation needs lots of manpower and expensive equipment, chemicals treatment has some toxic byproduct and high residual, microbial agents only has limited in laboratory research), the coagulation-flocculation of HAB species by modified clay (MC) has been proven to be an effective, lowcost and environmentally friendly method that has been widely applied in the field, particularly in eastern Asia. In order to examine the long-term effects of MC treatment, this study investigated the alternations in seawater of Skeletonema costatum, a high biomass dominant HAB species along the Chinese coast, by comparing the degradation of S. costatum detritus (A1) with the application of MC treatment (A2) and MC treatment in sediment condition (A3). The low dosage of 0.25 g/L MC could efficiently remove 4�0 8 cells/L of S. costatum cells within 3.5 h (approximately 97% removal). In addition, the results showed that both inorganic and organic nutrients were effectively reduced from seawater by MC particles. Compared to the total nitrogen (TN) and total phosphorus (TP) concentrations in A1 seawater, 44% of TN and 93% of TP in A2 seawater, as well as 72% of TN and 93% of TP in A3 seawater were removed during the onemonth incubation period. Simultaneously, 64% of DISi in A2 and 44% of DISi in A3 significantly decreased (P <0.001). This study demonstrated that MC treatment was able to significantly increase the downward flux of nutrients and delay the release velocity of inorganic nutrient from MC-algae matrix into the overlying seawater, particularly within sediment environment.
Key words:    modified clay|HABs mitigation|nutrients|Skeletonema costatum|ecological effect   
Received: 2014-06-05   Revised: 2014-09-23
PDF ( KB) Free
Print this page
Add to favorites
Email this article to others
Articles by LU Guangyuan
Articles by SONG Xiuxian
Articles by YU Zhiming
Articles by CAO Xihua
Articles by YUAN Yongquan
Ahammed Shabeer T P, Saha A, Gajbhiye V T, Gupta S, Manjaiah K M, Varghese E. 2014a. Simultaneous removal of multiple pesticides from water: effect of organically modified clays as coagulant aid and adsorbent in coagulation-flocculation process. Environ. Technol., 35 (20): 2 619-2 627.
Ahammed Shabeer T P, Saha A, Gajbhiye V T, Gupta S, Manjaiah K M, Varghese E. 2014b. Removal of poly aromatic hydrocarbons (PAHs) from water: effect of nano and modified nano-clays as a flocculation aid and adsorbent in coagulation-flocculation process. Polycycl. Aromat. Comp., 34 (4): 452-467.
Anderson D M. 1997. Turning back the harmful red tide. Nature, 388 (6642): 513-514.
Anderson D M. 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast Manage., 52 (7): 342-347.
Anderson D M, Cembella A D, Hallegraeff G M. 2012. Progress in understanding harmful algal blooms: paradigm shifts and new technologies for research, monitoring, and management. Annu. Rev. Mar. Sci., 4 (1): 143-176.
Archambault M C, Bricelj V M, Grant J, Anderson D M. 2004. Effects of suspended and sedimented clays on juvenile hard clams, Mercenaria mercenaria, within the context of harmful algal bloom mitigation. Mar. Biol., 144 (3): 553- 565.
Armstrong R A, Lee C, Hedges J I, Honjo S, Wakeham S G. 2002. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. Pt. II, 49 (1-3): 219- 236.
Ayyasamy P M, Shanthi K, Lakshmanaperumalsamy P, Lee S J, Choi N C, Kim D J. 2007. Two-stage removal of nitrate from groundwater using biological and chemical treatments. J. Biosci. Bioeng., 104 (2): 129-134.
Balzano S, Pancost R D, Lloyd J R, Statham P J. 2011. Changes in fatty acid composition in degrading algal aggregates. Marine Chemistry, 124 (1-4): 2-13.
Blanchemain A, Grizeau D. 1996. Eicosapentaenoic acid content of Skeletonema costatum as a function of growth and irradiance; relation with chlorophyll a content and photosynthetic capacity. J. Exp. Mar. Biol. Ecol., 196 (1- 2): 177-188.
Capellacci S, Battocchi C, Casabianca S, Giovine M, Bavestrello G, Penna A. 2013. Bioavailability of different chemical forms of dissolved silica can affect marine diatom growth. Marine Ecology, 34 (1): 103-111.
Certner R, Cho H, Gallo N, Gibbons A, Kim C, Liu T, Miller H, Parikh N, Wooten M, (Team BREATHE (Bay Revitalization Efforts Against the Hypoxic Environment)). 2011. Using Sediment Flocculation to Reduce the Impacts of Chesapeake Bay Microcystis aeruginosa Harmful Algal Blooms. Thesis submitted in partial fulfillment of the requirements of the Gemstone Program, University of Maryland, College Park. USA. p.55-107.
Chen J, Pan G. 2012. Harmful algal blooms mitigation using clay/soil/sand modified with xanthan and calcium hydroxide. J. Appl. Phycol., 24 (5): 1 183-1 189.
Churro C, Fernandes A S, Alverca E, Sam-Bento F, Paulino S, Figueira V C, Bento A J, Prabhakar S, Lobo A M, Martins L L, Mourato M P, Pereira P. 2010. Effects of tryptamine on growth, ultrastructure, and oxidative stress of cyanobacteria and microalgae cultures. Hydrobiologia, 649 (1): 195-206.
Conley D J, Johnstone R W. 1995. Biogeochemistry of N, P and Si in Baltic Sea sediments: response to a simulated deposition of a spring diatom bloom. Mar. Ecol. Prog. Ser., 122 : 265-276.
Curl H, Mcleod G C. 1961. The physiological ecology of a marine diatom, Skeletonema costatum (Grev) Cleve. J. Mar. Res., 19 (2): 70-88.
Desai S R, Verlecar X N, Ansari Z A, Jagtap T G, Sarkar A, Vashistha D, Dalal S G. 2010. Evaluation of genotoxic responses of Chaetoceros tenuissimus and Skeletonema costatum to water accommodated fraction of petroleum hydrocarbons as biomarker of exposure. Water Res., 44 (7): 2 235-2 244.
Ehrenhauss S, Witte U, Janssen F, Huettel M. 2004. Decomposition of diatoms and nutrient dynamics in permeable North Sea sediments. Cont. Shelf. Res., 24 (6): 721-737.
Frampton D M F, Gurney R H, Dunstan G A, Clementson L A, ToiflM C, Pollard C B, Burn S, Jameson I D, Blackburn S I. 2013. Evaluation of growth, nutrient utilization and production of bioproducts by a wastewater-isolated microalga. Bioresource Technol., 130 : 261-268.
Gehlen M, Bopp L, Ernprin N, Aumont O, Heinze C, Raguencau O. 2006. Reconciling surface ocean productivity, export fluxes and sediment composition in a global biogeochemical ocean model. Biogeosciences, 3 (4): 521-537.
Guillard R R L, Kilham P, Jackson T A. 1973. Kinetics of silicon-limited growth in the marine diatom Thalassiosira Pseudonana Hasle and Heimdal (= Cyclotella-Nana Hustedt). J. Phycol., 9 (3): 233-237.
Guillard R R L, Ryther J H. 1962. Studies of Marine Planktonic Diatoms: I. Cyclotella Nana Hustedt, and Detonula Confervacea (Cleve) Gran. Can. J. Microbiol., 8 (2): 229- 239.
Hamm C E. 2002. Interactive aggregation and sedimentation of diatoms and clay-sized lithogenic material. Limnol. Oceanogr., 47 (6): 1 790-1 795.
Ingalls A E, Lee C, Wakeham S G, Hedges J I. 2003. The role of biominerals in the sinking flux and preservation of amino acids in the Southern Ocean along 170°W. Deep-Sea Res. Pt. II, 50 (3-4): 713-738.
Ingalls A E, Liu Z F, Lee C. 2006. Seasonal trends in the pigment and amino acid compositions of sinking particles in biogenic CaCO3 and SiO2 dominated regions of the Pacific sector of the Southern Ocean along 170° W. Deep-Sea Res. Pt. I, 53 (5): 836-859.
Inskeep W P, Bloom P R. 1985. Extinction coefficients of chlorophyll- a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol., 77 (2): 483-485.
Iversen M H, Ploug H. 2010. Ballast minerals and the sinking carbon flux in the ocean: carbon-specificrespiration rates and sinking velocity of marine snow aggregates. Biogeosciences, 7 (9): 2 613-2 624.
Iversen M H, Ploug H. 2013. Temperature effects on carbonspecific respiration rate and sinking velocity of diatom aggregates-potential implications for deep ocean export processes. Biogeosciences, 10 (6): 4 073-4 085.
Jardine P M, Mccarthy J F, Weber N L. 1989. Mechanisms of dissolved organic carbon adsorption on soil. Soil Sci. Soc. Am. J., 53 (5): 1 378-1 385.
Ji X Q, Han X T, Zheng L, Yang B J, Yu Z M, Zou J Z. 2011. Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chinese Journal of Oceanology and Limnology, 29 (4): 840-848.
Kemp A E, Villareal T A. 2013. High diatom production and export in stratified waters—a potential negative feedback to global warming. Progress in Oceanography, 119 : 4-23.
Kimura K, Tomaru Y, Nagasaki K. 2012. Ultrastructural observation of natural field phytoplankton cells by using rapid freezing and freeze substitution. Plankton & B enthos R esearch, 7 (3): 126-134.
Kooistra W H C F, Sarno D, Balzano S, Gu H F, Andersen R A, Zingone A. 2008. Global diversity and biogeography of Skeletonema species (Bacillariophyta). Protist, 159 (2): 177-193.
Krause J W, Nelson D M, Brzezinski M A. 2011. Biogenic silica production and the diatom contribution to primary production and nitrate uptake in the eastern equatorial Pacific Ocean. Deep-Sea Res. Pt. II, 58 (3-4): 434-448.
Larraza I, Peinado C, Abrusci C, Catalina F, Corrales T. 2011. Hyperbranched polymers as clay surface modifiers for UV-cured nanocomposites with antimicrobial activity. Journal of Photochemistry and Photobiology A : Chemistry, 224 (1): 46-54.
Lebedeva E V, Fogden A. 2011a. Nano-scale structure of crude oil deposits on water-wet substrates: dependence on aqueous phase and organic solvents. Colloid s Surface s A : Physicochemical and Engineering Aspects, 380 (1-3): 280-291.
Lebedeva E V, Fogden A. 2011b. Wettability alteration of kaolinite exposed to crude oil in salt solutions. Colloid Surface A : Physicochemical and Engineering Aspects, 377 (1-3): 115-122.
Lee Y J, Choi J K, Kim E K, Youn S H, Yang E J. 2008. Field experiments on mitigation of harmful algal blooms using a Sophorolipid-Yellow clay mixture and effects on marine plankton. Harmful Algae, 7 (2): 154-162.
Liao M. 2006. Effects of organic acids on adsorption of cadmium onto kaolinite, goethite, and bayerite. Pedosphere, 16 (2): 185-191.
Lin Y X, Cao X H, Song X X, Wang N, Yu Z M. 2013. Mechanisms and factors affecting the adsorption of sodium alginate onto modified clays. Chinese Journal of Oceanology and Limnology, 31 (4): 867-875.
Liu H J, Hu C Z, Zhao H, Qu J H. 2009. Coagulation of humic acid by PACl with high content of Al13: the role of aluminum speciation. Separation and Purification Technology, 70 (2): 225-230.
Loucaides S, Van Cappellen P, Roubeix V, Moriceau B, Ragueneau O. 2012. Controls on the recycling and preservation of biogenic silica from biomineralization to burial. Silicon, 4 (1): 7-22.
Markiewicz M, Mrozik W, Rezwan K, Thöming J, Hupka J, Jungnickel C. 2013. Changes in zeta potential of imidazolium ionic liquids modified minerals— Implications for determining mechanism of adsorption. Chemosphere, 90 (2): 706-712.
Maruyama S, Kim E. 2013. A modern descendant of early green algal phagotrophs. Curr. Biol., 23 (12): 1 081-1 084.
Matilainen A, Vepsäläinen M, Sillanpää M. 2010. Natural organic matter removal by coagulation during drinking water treatment: a review. Adv. Colloid Interfac. Sci., 159 (2): 189-197.
Miao C G, Tang Y, Zhang H, Wu Z Y, Wang X Q. 2014. Harmful algae blooms removal from fresh water with modified vermiculite. Environ. Technol., 35 (3): 340-346.
Moriceau B, Garvey M, Ragueneau O, Passow U. 2007. Evidence for reduced biogenic silica dissolution rates in diatom aggregates. Mar. Ecol. Prog. Ser., 333 : 129-142.
Moriceau B, Goutx M, Guigue C, Lee C, Armstrong R, Duflos M, Tamburini C, Charriere B, Ragueneau O. 2009. Si-C interactions during degradation of the diatom Skeletonema marinoi. Deep-Sea Res. Pt. II, 56 (18): 1 381-1 395.
Nelson D M, Tréguer P, Brzezinski M A, Leynaert A, Quéguiner B. 1995. Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochem. Cy., 9 (3): 359-372.
Officer C B, Ryther J H. 1980. The possible importance of silicon in marine eutrophication. Mar. Ecol. Prog. Ser., 3 (1): 83-91.
Pan G, Chen J, Anderson D M. 2011. Modified local sands for the mitigation of harmful algal blooms. Harmful A lgae, 10 (4): 381-387.
Pan G, Dai L C, Li L, He L C, Li H, Bi L, Gulati R D. 2012. Reducing the recruitment of sedimented algae and nutrient release into the overlying water using modified soil/sand flocculation-capping in eutrophic lakes. Environ. Sci. Technol., 46 (9): 5 077-5 084.
Pierce R H, Henry M S, Higham C J, Blum P, Sengco M R, Anderson D M. 2004. Removal of harmful algal cells ( Karenia brevis ) and toxins from seawater culture by clay flocculation. Harmful Algae, 3 (2): 141-148.
Ploug H, Iversen M H, Koski M, Buitenhuis E T. 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets: direct measurements of ballasting by opal and calcite. Limnol. Oceanogr., 53 (2): 469-476.
Puskaric S, Mortain-Bertrand A. 2003. Physiology of diatom Skeletonema costatum (Grev.) Cleve photosynthetic extracellular release: evidence for a novel coupling between marine bacteria and phytoplankton. Journal of Plankton Research, 25 (10): 1 227-1 235.
Qin H J, Li S S, Li D H. 2013. An improved method for determining phytoplankton chlorophyll a concentration without filtration. Hydrobiologia, 707 (1): 81-95.
Rao F, Ramirez-Acosta F J, Sanchez-Leija R J, Song S X, Lopez-Valdivieso A. 2011. Stability of kaolinite dispersions in the presence of sodium and aluminum ions. Appl. Clay Sci., 51 (1-2): 38-42.
Reddy G B, Forbes D A, Hunt P G, Cyrus J S. 2011. Effect of polyaluminium chloride on phosphorus removal in constructed wetlands treated with swine wastewater. Water Sci. Technol., 63 (12): 2 938-2 943.
Salter I, Böttjer D, Christaki U. 2011. The effect of inorganic particle concentration on bacteria-virus-nanoflagellate dynamics. Environmental Microbiology, 13 (10): 2 768- 2 777.
Sañudo-Wilhelmy S A, Tovar-Sanchez A, Fu F X, Capone D G, Carpenter E J, Hutchins D A. 2004. The impact of surface-adsorbed phosphorus on phytoplankton Redfield stoichiometry. Nature, 432 (7019): 897-901.
Schroth B K, Sposito G. 1998. Effect of landfill leachate organic acids on trace metal adsorption by kaolinite. Environ. Sci. Technol., 32 (10): 1 404-1 408.
Siipola V, Mäntyniemi S, Lehtimäki M, Tallberg P. 2013. Separating biogenic and adsorbed pools of silicon in sediments using bayesian inference. Silicon, 5 (1): 53-65.
Spilling K, Lindström M. 2008. Phytoplankton life cycle transformations lead to species-specific effects on sediment processes in the Baltic Sea. Cont. Shelf Res., 28 (17): 2 488-2 495.
Swartzen-Allen S L, Matijevic E. 1974. Surface and colloid chemistry of clays. Chemical Reviews, 74 (3): 385-400.
Tallberg P, Lehtoranta J, Hietanen S. 2013. Silicate release from sand-manipulated sediment cores: biogenic or adsorbed Si? Silicon, 5 (1): 67-74.
Tallberg P, Räike A, Lukkari K, Leivuori M, Lehtoranta J, Pitkanen H. 2012. Horizontal and vertical distribution of biogenic silica in coastal and profundal sediments of the Gulf of Finland (northeastern Baltic Sea). Boreal Environ. Res., 17 (5): 347-362.
Tang D L, Di B P, Wei G F, Ni I H, Oh I S, Wang S F. 2006. Spatial, seasonal and species variations of harmful algal blooms in the South Yellow Sea and East China Sea. Hydrobiologia, 568 (1): 245-253.
Turner J T. 2002. Zooplankton fecal pellets, marine snow and sinking phytoplankton blooms. Aquat. Microb. Ecol., 27 (1): 57-102.
Unuabonah E I, Olu-Owolabi B I, Oladoja A N, Ofomaja A E, Yang Z L. 2010. Pb/Ca ion exchange on kaolinite clay modified with phosphates. J. Soil Sediment., 10 (6): 1 103- 1 114.
Vidoudez C, Pohnert G. 2012. Comparative metabolomics of the diatom Skeletonema marinoi in different growth phases. Metabolomics, 8 (4): 654-669.
Villacorte L O, Ekowati Y, Winters H, Amy G L, Schippers J C, Kennedy M D. 2013. Characterisation of transparent exopolymer particles (TEP) produced during algal bloom: a membrane treatment perspective. Desalination and Water Treatment, 51 (4-6): 1 021-1 033.
Wang W B, Yang C Y, Tang D S, Li D H, Liu Y D, Hu C X. 2007. Effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of manmade cyanobacterial crusts under experimental conditions. Sci. China C Life Sci., 50 (4): 530-534.
Wu C D, Xu X J, Liang J L, Wang Q, Dong Q, Liang W L. 2011. Enhanced coagulation for treating slightly polluted algae-containing surface water combining polyaluminum chloride (PAC) with diatomite. Desalination, 279 (1-3): 140-145.
Yamamoto T, Inokuchi Y, Sugiyama T. 2004. Biogeochemical cycles during the species succession from Skeletonema costatum to Alexandrium tamarense in northern Hiroshima Bay. J. Marine Syst., 52 (1-4): 15-32.
Yu Z M, Ma X N, Xie Y. 1995. Study of main nutrients adsorption on clays in seawater. Oceanologia et Limnologia Sinica, 26 (2): 208-214. (in Chinese with English abstract)
Yu Z M, Sengco M R, Anderson D M. 2004. Flocculation and removal of the brown tide organism, Aureococcus anophagefferens (Chrysophyceae), using clays. J. Appl. Phycol., 16 (2): 101-110.
Yu Z M, Sun X X, Song X X, Zhang B. 1999. Clay surface modification and its coagulation of red tide organisms. Chinese Sci. Bull., 44 (7): 617-620.
Zarchi I, Friedler E, Rebhun M. 2013. Polyaluminium chloride as an alternative to alum for the direct filtration of drinking water. Environ. Technol., 34 (9): 1 199-1 209.
Zhu M Y, Xu Z J, Li R X, Wang Z L, Shi X Y. 2009. Interspecies competition for nutrients between Prorocentrum donghaiense Lu and Skeletonema costatum (Grev.) Cleve in mesocosm experiments. Acta Oceanol. Sin., 28 (1): 72- 82.
Copyright © Haiyang Xuebao