Cite this paper:
Hongjia HUANG, Chuqiao GAN, Jiahui HUANG, Chen ZOU, Hongye LI, Jiesheng LIU, Weidong YANG. Variability of Prorocentrum donghaiense response to allelopathic action from Alexandrium pacificum in laboratory culture[J]. Journal of Oceanology and Limnology, 2021, 39(4): 1305-1315

Variability of Prorocentrum donghaiense response to allelopathic action from Alexandrium pacificum in laboratory culture

Hongjia HUANG, Chuqiao GAN, Jiahui HUANG, Chen ZOU, Hongye LI, Jiesheng LIU, Weidong YANG
Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
Abstract:
The dinoflagellates Alexandrium pacificum and Prorocentrum donghaiense are two wellknown harmful algal blooms (HABs)-forming species, both were usually found in the same sea areas in form of HABs in China. To date, there is no mechanistic model that can fully explain the occurrence of P. donghaiense blooms with A. pacificum. We found that different strains of P. donghaiense had different intrinsic growth rates of 0.107-0.215/d, and these strains exhibited different responses to the allelopathic action from A. pacificum. Some strains of P. donghaiense could grow well despite some degrees of inhibition in a short period, suggesting the two algal species P. donghaiense and A. pacificum could coexist, even if A. pacificum was allelopathic. Our findings may advance the understanding of phenotypes in P. donghaiense and provide a potential mechanism involved in the coexistence of P. donghaiense and A. pacificum in the same area.
Key words:    Prorocentrum donghaiense|allelopathy|Lotka-Volterra model|algal bloom|phenotype   
Received: 2020-06-09   Revised: 2020-07-21
Tools
PDF (1093 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Hongjia HUANG
Articles by Chuqiao GAN
Articles by Jiahui HUANG
Articles by Chen ZOU
Articles by Hongye LI
Articles by Jiesheng LIU
Articles by Weidong YANG
References:
Alpermann T J, Tillmann U, Beszteri B, Cembella A D, John U. 2010. Phenotypic variation and genotypic diversity in a planktonic population of the toxigenic marine dinoflagellate Alexandrium tamarense (Dinophyceae).Journal of Phycology, 46(1):18-32, https://doi.org/10.1111/j.1529-8817.2009.00767.x.
Anderson D M, Alpermann T J, Cembella A D, Collos Y, Masseret E, Montresor M. 2012. The globally distributed genus Alexandrium:multifaceted roles in marine ecosystems and impacts on human health. Harmful Algae, 14:10-35, https://doi.org/10.1016/j.hal.2011.10.012.
Barreiro Felpeto A, Roy S, Vasconcelos V M. 2018. Allelopathy prevents competitive exclusion and promotes phytoplankton biodiversity. Oikos, 127(1):85-98, https://doi.org/10.1111/oik.04046.
Barrett R D H, Schluter D. 2008. Adaptation from standing genetic variation. Trends in Ecology & Evolution, 23(1):38-44, https://doi.org/10.1016/j.tree.2007.09.008.
Brandenburg K M, Wohlrab S, John U, Kremp A, Jerney J, Krock B, Van de Waal D B. 2018. Intraspecific trait variation and trade-offs within and across populations of a toxic dinoflagellate. Ecology Letters, 21(10):1 561-1 571, https://doi.org/10.1111/ele.13138.
Cai Z P, Zhu H H, Duan S S. 2014. Allelopathic interactions between the red-tide causative dinoflagellate Prorocentrum donghaiense and the diatom Phaeodactylum tricornutum. Oceanologia, 56(3):639-650, https://doi.org/10.5697/oc.56-3.639.
Chen J, Ye Q, Gu H F, Li H Y, Lv S H, Liu J S, Yang W D. 2015. Variability in the allelopathic action of the Alexandrium tamarense species complex along the coast of China. Harmful Algae, 47:17-26, https://doi.org/10.1016/j.hal.2015.05.008.
Cullen J J, MacIntyre J G. 1999. Behavior, physiology and the niche of depth-regulating phytoplankton. In:Heidelberg G M, Anderson D M, Cembella A D, Hallegraeff G M eds.Physiological Ecology of Harmful Algal Blooms.Springer-Verlag, Heidelberg. p.1-21.
De Laender F, Melian C J, Bindler R, Van den Brink P J, Daam M, Roussel H, Juselius J, Verschuren D, Janssen C R. 2014. The contribution of intra- and interspecific tolerance variability to biodiversity changes along toxicity gradients. Ecology Letters, 17(1):72-81, https://doi.org/10.1111/ele.12210.
Fistarol G O, Legrand C, Selander E, Hummert C, Stolte W, Granéli E. 2004. Allelopathy in Alexandrium spp.:effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35(1):45-56, https://doi.org/10.3354/ame035045.
Gao H J, Song Y H, Lv C J, Chen X M, Yu H B, Peng J F, Wang M. 2015. The possible allelopathic effect of Hydrilla verticillata on phytoplankton in nutrient-rich water.Environmental Earth Sciences, 73(9):5 141-5 151, https://doi.org/10.1007/s12665-015-4316-8.
Glibert P M, Burkholder J M, Kana T M. 2012. Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae, 14:231-259, https://doi.org/10.1016/j.hal.2011.10.023.
Gobler C J, Doherty O M, Hattenrath-Lehmann T K, Griffith A W, Kang Y, Litaker R W. 2017. Ocean warming since 1982 has expanded the niche of toxic algal blooms in the North Atlantic and North Pacific oceans. Proceedings of the National Academy of Sciences of the United States of America, 114(19):4 975-4 980, https://doi.org/10.1073/pnas.1619575114.
Godhe A, Rynearson T. 2017. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philosophical Transactions of the Royal Society B-Biological Sciences, 372(1728):20160399, https://doi.org/10.1098/rstb.2016.0399.
Granéli E, Salomon P S. 2010. Factors influencing allelopathy and toxicity in Prymnesium parvum. Journal of the American Water Resources Association, 46(1):108-120, https://doi.org/10.1111/j.1752-1688.2009.00395.x.
Hakanen P, Suikkanen S, Kremp A. 2014. Allelopathic activity of the toxic dinoflagellate Alexandrium ostenfeldii:intrapopulation variability and response of co-occurring dinoflagellates. Harmful Algae, 39:287-294, https://doi.org/10.1016/j.hal.2014.08.005.
Harvey E L, Menden-Deuer S, Rynearson T A. 2015.Persistent intra-specific variation in genetic and behavioral traits in the raphidophyte, Heterosigma akashiwo. Frontiers in Microbiology, 6:1 277, https://doi.org/10.3389/fmicb.2015.01277.
Hu Z X, Mulholland M R, Duan S S, Xu N. 2012. Effects of nitrogen supply and its composition on the growth of Prorocentrum donghaiense. Harmful Algae, 13:72-82, https://doi.org/10.1016/j.hal.2011.10.004.
Huang H J, Gan C Q, Xiao S W, Zou C, Balamurugan S, Li H Y, Liu J S, Yang W D. 2020. Genetic diversity of Prorocentrum donghaiense population during bloom in the East China Sea revealed by microsatellite. Journal of Applied Phycology, 32(3):1 851-1 862, https://doi.org/10.1007/s10811-020-02113-4.
Hulot F D, Huisman J. 2004. Allelopathic interactions between phytoplankton species:the roles of heterotrophic bacteria and mixing intensity. Limnology and Oceanography, 49(4):1 424-1 434, https://doi.org/10.4319/lo.2004.49.4_part_2.1424.
Kaur S, Srivastava A, Kumar S, Srivastava V, Ahluwalia A S, Mishra Y. 2019. Biochemical and proteomic analysis reveals oxidative stress tolerance strategies of Scenedesmus abundans against allelochemicals released by Microcystis aeruginosa. Algal Research, 41:101525, https://doi.org/10.1016/j.algal.2019.101525.
Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, Penna A. 2012. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecology and Evolution, 2(6):1 195-1 207, https://doi.org/10.1002/ece3.245.
Legrand C, Rengefors K, Fistarol G O, Granéli E. 2003.Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologia, 42(4):406-419, https://doi.org/10.2216/i0031-8884-42-4-406.1.
Lin J N, Yan T, Zhang Q C, Wang Y F, Liu Q, Zhou M J. 2014.In situ detrimental impacts of Prorocentrum donghaiense blooms on zooplankton in the East China Sea. Marine Pollution Bulletin, 88(1-2):302-310, https://doi.org/10.1016/j.marpolbul.2014.08.026.
Lu D D, Goebel J. 2001. Five red tide species in genus Prorocentrum including the description of Prorocentrum donghaiense Lu sp. nov. from the East China Sea. Chinese Journal of Oceanology and Limnology, 19(4):337-344, https://doi.org/10.1007/BF02850738.
Lu D D, Qi Y Z, Goebel J, Zou J Z, Gao Y H. 2003.Redescription of Prorocentrum donghaiense Lu and comparison with relevant Prorocentrum species. Chinese Journal of Applied Ecology, 14(7):1 060-1 064. (in Chinese with English abstract)
Ma H Y, Krock B, Tillmann U, Cembella A. 2009. Preliminary characterization of extracellular allelochemicals of the toxic marine dinoflagellate Alexandrium tamarense using a Rhodomonas salina bioassay. Marine Drugs, 7(4):497-522, https://doi.org/10.3390/md7040497.
Ma H Y, Krock B, Tillmann U, Muck A, Wielsch N, Svatoš A, Cembella A. 2011. Isolation of activity and partial characterization of large non-proteinaceous lytic allelochemicals produced by the marine dinoflagellate Alexandrium tamarense. Harmful Algae, 11:65-72, https://doi.org/10.1016/j.hal.2011.07.004.
Ou L J, Wang D, Huang B Q, Hong H S, Qi Y Z, Lu S H. 2008.Comparative study of phosphorus strategies of three typical harmful algae in Chinese coastal waters. Journal of Plankton Research, 30(9):1 007-1 017, https://doi.org/10.1093/plankt/fbn058.
Poulin R X, Poulson-Ellestad K L, Roy J S, Kubanek J. 2018.Variable allelopathy among phytoplankton reflected in red tide metabolome. Harmful Algae, 71:50-56, https://doi.org/10.1016/j.hal.2017.12.002.
Prasetiya F S, Safitri I, Widowati I, Cognie B, Decottignies P, Gastineau R, Morançais M, Windarto E, Tremblay R, Mouget J. 2016. Does allelopathy affect co-culturing Haslea ostrearia with other microalgae relevant to aquaculture? Journal of Applied Phycology, 28(4):2 241-2 254, https://doi.org/10.1007/s10811-015-0779-y.
Prince E K, Myers T L, Kubanek J. 2008. Effects of harmful algal blooms on competitors:allelopathic mechanisms of the red tide dinoflagellate Karenia brevis. Limnology and Oceanography, 53(2):531-541, https://doi.org/10.4319/lo.2008.53.2.0531.
Qiu X C, Yamasaki Y, Shimasaki Y, Gunjikake H, Shikata T, Matsubara T, Nagasoe S, Etoh T, Matsui S, Honjo T, Oshima Y. 2011. Growth interactions between raphidophytes Chattonella antiqua and Heterosigma akashiwo. Thalassas, 27(1):33-45.
Roy S, Alam S, Chattopadhyay J. 2006. Competing effects of toxin-producing phytoplankton on overall plankton populations in the Bay of Bengal. Bulletin of Mathematical Biology, 68(8):2 303-2 320, https://doi.org/10.1007/s11538-006-9109-5.
Tillmann U, Hansen P J. 2009. Allelopathic effects of Alexandrium tamarense on other algae:evidence from mixed growth experiments. Aquatic Microbial Ecology, 57(1):101-112, https://doi.org/10.3354/ame01329.
Tillmann U, John U. 2002. Toxic effects of Alexandrium spp.on heterotrophic dinoflagellates:an allelochemical defence mechanism independent of PSP-toxin content.Marine Ecology Progress Series, 230:47-58, https://doi.org/10.3354/meps230047.
Uchida T, Toda S, Matsuyama Y, Yamaguchi M, Kotani Y, Honjo T. 1999. Interactions between the red tide dinoflagellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 241(2):285-299, https://doi.org/10.1016/S0022-0981(99)00088-X.
Van de Waal D B, Tillmann U, Martens H, Krock B, van Scheppingen Y, John U. 2015. Characterization of multiple isolates from an Alexandrium ostenfeldii bloom in The Netherlands. Harmful Algae, 49:94-104, https://doi.org/10.1016/j.hal.2015.08.002.
Wang J T, Zhang Y W, Li H, Cao J. 2013. Competitive interaction between diatom Skeletonema costatum and dinoflagellate Prorocentrum donghaiense in laboratory culture. Journal of Plankton Research, 35(2):367-378, https://doi.org/10.1093/plankt/fbs098.
Wang Y, Yu Z M, Song X X, Zhang S D. 2006. Interactions between the bloom-forming dinoflagellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research, 56(1):17-26, https://doi.org/10.1016/j.seares.2006.04.002.
Wu L F, Wang Y N. 2011. Estimation the parameters of LotkaVolterra model based on grey direct modelling method and its application. Expert Systems with Applications, 38(6):6 412-6 416, https://doi.org/10.1016/j.eswa.2010.09.013.
Xu N, Duan S S, Li A F, Zhang C W, Cai Z P, Hu Z X. 2010.Effects of temperature, salinity and irradiance on the growth of the harmful dinoflagellate Prorocentrum donghaiense Lu. Harmful Algae, 9(1):13-17, https://doi.org/10.1016/j.hal.2009.06.002.
Xu W J, Tan L J, Guo X, Wang J T. 2020. Isolation of anti-algal substances from Cylindrotheca closterium and their inhibition activity on bloom-forming Prorocentrum donghaiense. Ecotoxicology and Environmental Safety, 190:110180, https://doi.org/10.1016/j.ecoenv.2020.110180.
Yamasaki Y, Ohmichi Y, Shikata T, Hirose M, Shimasaki Y, Oshima Y, Honjo T. 2011. Species-specific alleopathic effects of the diatom Skeletonema costatum. Thalassas, 27(1):21-32.
Yang W D, Xie J, van Rijssel M, Li H Y, Liu J S. 2010.Allelopathic effects of Alexandrium spp. on Prorocentrum donghaiense. Harmful Algae, 10(1):116-120, https://doi.org/10.1016/j.hal.2010.08.001.
Yin J, Xie J, Yang W D, Li H Y, Liu J S. 2010. Effect of Alexandrium tamarense on three bloom-forming algae.Chinese Journal of Oceanology and Limnology, 28(4):940-944, https://doi.org/10.1007/s00343-010-9925-1.
Zhang S F, Yuan C J, Chen Y, Lin L, Wang D Z. 2019.Transcriptomic response to changing ambient phosphorus in the marine dinoflagellate Prorocentrum donghaiense.Science of the Total Environment, 692:1 037-1 047, https://doi.org/10.1016/j.scitotenv.2019.07.291.
Zhang Y W, Wang J T, Tan L J, Cao J, Li H. 2015. Effect of allelopathy on the competition and succession of Skeletonema costatum and Prorocentrum donghaiense.Marine Biology Research, 11(10):1 093-1 099, https://doi.org/10.1080/17451000.2015.1062519.
Copyright © Haiyang Xuebao