Cite this paper:
CAO Jiashun, OLEYIBLO Oloche James, XUE Zhaoxia, OTACHE Y. Martins, FENG Qian. Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source[J]. Journal of Oceanology and Limnology, 2015, 33(4): 1039-1052

Achieving low effluent NO3-N and TN concentrations in low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio without using external carbon source

CAO Jiashun1,2,3, OLEYIBLO Oloche James2, XUE Zhaoxia1,2,3, OTACHE Y. Martins4, FENG Qian1,2
1 Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China;
2 College of Environment, Hohai University, Nanjing 210098, China;
3 National Engineering Research Center of Water Resource Efficient Utilization and Engineering Safety, Hohai University, Nanjing 210098, China;
4 Department of Agricultural & Bioresources Engineering, Federal University of Technology, P. M. B 65, Minna, Niger State, Nigeria
Abstract:
Two mathematical models were used to optimize the performance of a full-scale biological nutrient removal (BNR) activated treatment plant, a plug-flow bioreactors operated in a 3-stage phoredox process configuration, anaerobic anoxic oxic (A2/O). The ASM2d implemented on the platform of WEST2011 software and the BioWin activated sludge/anaerobic digestion (AS/AD) models were used in this study with the aim of consistently achieving the designed effluent criteria at a low operational cost. Four ASM2d parameters (the reduction factor for denitrification (η NO3, H), the maximum growth rate of heterotrophs (μH), the rate constant for stored polyphosphates in PAOs (qpp), and the hydrolysis rate constant (kh)) were adjusted. Whereas three BioWin parameters (aerobic decay rate (bH), heterotrophic dissolved oxygen (DO) half saturation (KOA), and YP/acetic) were adjusted. Calibration of the two models was successful; both models have average relative deviations (ARD) less than 10% for all the output variables. Low effluent concentrations of nitrate nitrogen (N-NO3), total nitrogen (TN), and total phosphorus (TP) were achieved in a full-scale BNR treatment plant having low influent chemical oxygen demand (COD) to total Kjeldahl nitrogen (TKN) ratio (COD/TKN). The effluent total nitrogen and nitrate nitrogen concentrations were improved by 50% and energy consumption was reduced by approximately 25%, which was accomplished by converting the two-pass aerobic compartment of the plug-flow bioreactor to anoxic reactors and being operated in an alternating mode. Findings in this work are helpful in improving the operation of wastewater treatment plant while eliminating the cost of external carbon source and reducing energy consumption.
Key words:    anaerobic anoxic oxic (A2/O) process|activated sludge|ASM2d|BioWin AS/AD|WEST2011   
Received: 2014-07-19   Revised: 2014-11-21
Tools
PDF ( KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by CAO Jiashun
Articles by OLEYIBLO Oloche James
Articles by XUE Zhaoxia
Articles by OTACHE Y. Martins
Articles by FENG Qian
References:
Andres H, Newbigging M, Bicudo J. 2008. Using a Wastewater Process Model to Evaluate the Capacity of the Galt WWTP Under Increased Load from an Industrial Source. Proceedings of the 37th Annual WEAO Technical Symposium, Blue Mountain, Ontario, 2008.
APHA. 1995. Standard Methods for the Examination of Water and Wastewater. 19thedn. American Public Health, Washington DC, USA.
Baeza J A, Gabriel D, Lafuente J. 2003. Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic (A2/O) wastewater treatment plant (WWTP). Process Biochem., 39 (11): 1 615-1 624, http://dx.doi.org/10.1016/S0032-9592(03)00300-5.
Barker P S, Dold P L. 1997. General model for biological nutrient removal activated-sludge systems: model presentation. Water. Environ. Res., 69 (5): 969-984, http://dx.doi.org/10.2175/106143097X125669.
Barnard J L. 2006. Biological nutrient removal: Where we have been, where we are going? In : WEFTEC 2006, Water Environment Federation, Alexandria, VA, USA. p.1-25.
Buris B E. 1981. Energy conservation for existing wastewater treatment plants. J. Water Pollut. Control Fed., 53 (5): 536-545.
EPA. 2010. Nutrient Control Design Manual: State of Technology Review Report by Cadmus Group, Inc. Office of Research and Development/National Risk Management Research Laboratory, EPA/600/R-10/100|August 2010, United States Environmental Protection Agency, Cincinnati, Ohio 45268.
Feng L Y, Wang H, Chen Y G, Wang Q. 2009. Effect of solids retention time and temperature on waste activated sludge hydrolysis and short-chain fatty acids accumulation under alkaline conditions in continuous-flow reactors. Bioresour. Technol., 100 (1): 44-49, http://dx.doi.org/10.1016/j. biortech.2008.05.028.
Gillot S, Ohtsuki, T, Rieger L, Shaw A R, Tackas I, Winkler S. 2009. Development of a unifiedprotocol for good modeling practice in activated sludge modeling. Influents, 4, 70.
Ginestet P, Maisonnier A, Sperandio M. 2002. Wastewater COD characterization: biodegradability of physicochemical fractions. Water Sci. Technol., 45 (6): 89-97.
Grady Jr, C P L, Daigger G T, Lim H C. 1999. Biological Wastewater Treatment. 2nd edn. Marcel Dekker, New York.
Griborio A, Rohrbacher J, Taylor R, Pitt P, Litmer R. 2008. Evaluation of Wet Weather Strategies and Clarifier Optimization Using State-of-the-Art Tools. In : Proceeding of the 81th Annual Water Environment Federation Technical Exposition and Conference, Chicago, IL. p.4 957-4 968.
Guisasola A, Pijuan M, Baeza J A, Carrera J, Lafuente J. 2006. Improving the start-up of an EBPR system using OUR to control the aerobic phase length: a simulation study. Water Sci. Technol., 53 (4-5): 253-262, http://dx.doi.org/10. 2166/wst.2006.130.
Harleman D R F. 1990. Cutting the waste in wastewater cleanups. Technology Review, 93 (3): 60-68.
Henze M, Dupont R, Grau P, De La S A. 1993. Rising sludge in secondary settlers due to denitrification. Water Res., 27 (2): 231-236, http://dx.doi.org/10.1016/0043-1354(93) 90080-2.
Henze M, Grady C P L, Gujer W, Marais G V R, Matsuo T. 1987. A general model for single-sludge wastewater treatment systems. Water Res., 21 (5): 505-515.
Henze M, Gujer W, Mino T, Matsuo T, Wentzel M C, Marais G V R. 1995. Activated Sludge Model No. 2. IAWQ Scientific and Technical Report No. 3. IAWQ, London. Henze M, Gujer W, Mino T, Matsuo T, Wentzel M C, Marais G V R, van Loosdrecht M C M. 1999. Activated sludge model No.2D, ASM2D. Water Sci. Technol., 39 (1): 165- 182, http://dx.doi.org/10.1016/S0273-1223(98)00829-4.
Henze M, Gujer W Mino T, van Loosdrecht M C M. 2000. Activated sludge models ASM1, ASM2, ASM2D and ASM3. IWA Scientific and Technical Report No. 9. IWA Publishing, London, UK.
Henze M, Harremoes P, Jansen J, Arvin E. 2002. Wastewater Treatment: Biological and Chemical Processes. Verlag, Berlin.
Hulsbeek J J W, Kruit J, Roeleveld P J, van Loosdrecht M C M. 2002. A practical protocol for dynamic modelling of activated sludge systems. Water Sci. Technol., 45 (6): 127- 136.
Insel G, Sin G, Lee D S, Vanrolleghem P A. 2004. A calibration methodology and model-based system analysis for nutrient removing SBRs, 3rd IWA International conference on SBR: Feb. 22-26, Noosa, Queensland, Australia. IWA Task Group. 2011. On Good Modelling Practice: Guidelines for use of activated sludge models. http://www.iwahq.org/fc/networks/task-groups/task-group-ongood- modelling-practice.html.
Kennedy K J, McHarg A M. 2007. Optimization of municipal wastewater biological nutrient removal using ASM2d. J. Environ Eng. Sci., 6(1): 31-43.
Langergraber G, Reiger L, Winkler S, Alex J, Wiese J, Owerdieck C, Ahnert M, Simon J, Maurer M. 2004. A guideline for simulation studies of wastewater treatment plants. Water Sci. Technol., 50 (7): 131-138.
Liwarska-Bizukojc E, Biernacki R. 2010. Identification of the most sensitive parameters in the activated sludge model implemented in BioWin software. Bioresour. Technol., 101 (19): 7 278-7 285, http://dx.doi.org/10.1016/j.biortech. 2010.04.065.
Liwarska-Bizukojc E, Olejnik D, Biernacki R, Ledakowicz S. 2013. Improving the operation of the full scale wastewater treatment plant with use of a complex activated sludge model. Environ. Prot. Eng., 39 (1): 183-195.
Makinia J. 2010. Mathematical Modelling and Computer Simulation of Activated Sludge Systems. IWA Publishing, London.
Makinia J, Rosenwinkel K, Spering V. 2006. Comparison of two model concepts for simulation of nitrogen removal at a full-scale biological nutrient removal pilot plant. J. Environ. Eng., 132 (4): 476-487, http://dx.doi.org/10.1061/(ASCE)0733-9372(2006)132:4(476).
Manga J, Ferrer J, Seco A, Garcia-Usach F. 2003. Design of nutrient removal activated sludge systems. Water Sci. Technol., 47 (11): 115-122.
Mamais D, Jenkins D, Pitt P. 1993. A rapid physical-chemical method for the determination of readily biodegradable soluble COD in municipal wastewater. Water Res., 27 (1) 195-197, http://dx.doi.org/10.1016/0043-1354(93)90211-y.
Meijer S C F, van der Spoel, H, Susanti S, Heijnen J J, van Loosdrecht M C M. 2002. Error diagnostics and data reconciliation for activated sludge modelling using mass balances. Water Sci. Technol., 45 (6): 145-156.
Meijer S C F, van Loosdrecht M C M, Heijnen J J. 2001. Metabolic modelling of full-scale biological nitrogen and phosphorus removing WWTP's. Water Res., 35 (11): 2 711-2 723, http://dx.doi.org/10.1016/S0043-1354(00) 00567-4.
Melcer H, Dold P L, Jones R M, Bye C M, Takács I, Stensel H D, Wilson A W, Sun P, Bury S. 2003. Methods for wastewater characterization in activated sludge modelling. WERF Report 99-WWF-3. Water Environment Research Foundation, Alexandria, VA, USA.
Meinhold T, Filipe C D M, Daigger G T, Isaacs S. 1999. Characterization of the denitrifying fraction of phosphate accumulating organisms in biological phosphate removal. Water Sci. Technol., 39 (1): 31-42, http://dx.doi.org/10. 1016/S0273-1223(98)00773-2.
Metcalf and Eddy Inc. 2003. Wastewater Engineering Treatment and Re-use. 4th edn. McGraw-Hill, Higher Education, New York. 1848p.
Mino T, van Loosdrecht M C M, Heijnen J J. 1998. Microbiology and biochemistry of the enhanced Biological phosphate removal process. Water Res., 32 (11): 3 193-3 207, http://dx.doi.org/10.1016/S0043- 1354(98)00129-8.
Neethling J B, Bakke B, Benisch M, Gu A, Stephens A, Stensel H D, Moore R. 2005. Factors Influencing the Reliability of Enhanced Biological Phosphorus Removal, WERF Report, 01-CTS-03, Water Environment Research Foundation, Alexandra, VA, USA.
Oleyiblo O J, Cao J S, Feng Q, Wang G, Xue Z X, Fang F. 2014. Evaluation and improvement of wastewater treatment plant performance using BioWin. Chin. J. Oceanol. Limnol., Accepted for publication. http://dx.doi. org/10.1007/s00343-015-4108-8.
Oleyiblo O J, Cao J S, Lu X G. 2013a. The use of simulation modelling for optimisation of phosphorus removal in sewage treatment under varying influent loading. RJASET, 6 (24): 4 663-4 670.
Oleyiblo O J, Cao J S, Lu X G. 2013b. Troubleshooting a fullscale wastewater treatment plant for biological nutrient removal. RJASET, 7 (4): 745-753.
Parker D, Esquer M, Hetherington M, Malik A, Robinson D, Wahlberg E, Wang J. 2000. Assessment and optimization of a chemically enhanced primary treatment system. In : WEFTEC 2000. Proceedings of the 73rd Annual Conference on Water Quality and Wastewater Treatment. Anaheim. p.560-573.
Petersen B, Vanrolleghem P A, Gernaey K, Henze M. 2002. Evaluation of an ASM1 model calibration procedure on a municipal-industrial wastewater treatment plant. J. Hydroinform., 4 : 15-38.
Power M. 1993. The predictive validation of ecological and environmental models. Ecol. Modelling., 68 (1-2): 33-50, http://dx.doi.org/10.1016/0304-3800(93)90106-3.
Puig S, van Loosdrecht M C M, Colprim J, Meijer S C F. 2008. Data Evaluation of full-scale wastewater treatment plants by mass balance. Water Res., 42 (18): 4 645-4 655, http://dx.doi.org/10.1016/j.watres.2008.08.009.
Randall C W, Barnard J L, Stensel H D. 1992. Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal. Technomic Publishing Company, Lancaster, Pennsylvania, USA.
Roeleveld P J, van Loosdrecht M C M. 2002. Experience with guidelines for wastewater characterisation in the Netherlands. Water Sci. Technol., 45 (6): 77-87.
Russel B M, Henriksen J P, Jørgensen S B, Gani R. 2002. Integration of design and control through model analysis. Comput. Chem. Eng, 26 (2): 213-225, http://dx.doi.org/10.1016/S0098-1354(01)00742-6.
Sin G, De Pauw D J W, Weijers S, Vanrolleghem P A. 2008. An efficient approach to automate the manual trial and error calibration of activated sludge models. Biotechnol. Bioeng., 100 (3): 516-528, http://dx.doi.org/10.1002/bit.21769.
Sin G, van Hulle S W H, De Pauw D J W, van Griensven A, Vanrolleghem P A. 2005. A critical comparison of systematic calibration protocols for activated sludge models: a SWOT analysis. Water Res., 39 (12): 2 459- 2 474, http://dx.doi.org/10.1016/j.watres.2005.05.006.
STOWA. 1996. Methods for influent characterization: inventory and guidelines. Report STOWA 96-08. Utrecht, the Netherlands. (in Dutch)
Takács I, Patry G G, Nolasco D. 1991. A dynamic model of the clarification-thickening process. Water Res., 25 (10): 1 263-1 271, http://dx.doi.org/10.1016/0043-1354(91) 90066-Y.
Thomann M. 2008. Quality evaluation methods for wastewater treatment plant data. Water Sci. Technol., 57 (10): 1 601- 1 609, http://dx.doi.org/10.2166/wst.2008.151.
Tong J, Chen Y G. 2007. Enhanced biological phosphorus removal driven by short-chain fatty acids produced from waste activated sludge alkaline fermentation. Environ. Sci. Technol., 41 : 7 126-7 130, http://dx.doi.org/10.1021/es071002n.
User Manual for BioWin v3.0. 2008. EnviroSim Associates Ltd., Hamilton, Canada. EnviroSim Associates Ltd.
Vanrolleghem P A, Insel G, Petersen B, Sin G, De Paw D, Nopens I, Dovermann H, Weijers S, Gernaey K. 2003. A comprehensive model calibration procedure for activated sludge models. In : WEFTEC 2003: 1-28. Water Environment Federation, Alexandria, VA, USA. p.210- 237.
Wang D B, Li X M, Yang Q, Zeng G M, Liao D X, Zhang J. 2008. Biological phosphorus removal in sequencing batch reactor with single-stage oxic process. Bioresour. Technol., 99 (13): 5 466-5 473, http://dx.doi.org/10.1016/j. biortech.2007.11.007
Wang D B, Li X M, Yang Q, Zheng W, Wu Y, Zeng T J, Zeng G M. 2012. Improved biological phosphorus removal performance driven by the aerobic/extended-idle regime with propionate as the sole carbon source. Water Res., 46 (12): 3 868-3 878, http://dx.doi.org/10.1016/j.watres. 2012.04.036.
Wang D B, Xu Q X, Yang W Q, Chen H B, Li X M, Liao D X, Yang G J, Yang Q, Zeng G M. 2014. A new configuration of sequencing batch reactor operated as a modified aerobic/extended-idle regime for simultaneously saving reactor volume and enhancing biological phosphorus removal. Biochem. Eng., 87 : 15-24, http://dx.doi.org/10. 1016/j.bej.2014.03.009.
Wang D B, Zheng W, Liao D X, Li X M, Yang Q, Zeng G M. 2013. Effect of initial pH control on biological phosphorus removal induced by the aerobic/extended-idle regime. Chem osphere, 90 (8): 2 279-2 287, http://dx.doi.org/10. 1016/j.chemosphere.2012.10.086.
Wouters-Wasiaka K, Héduit A, Audic J M, Lfevre F. 1994. Real-time control of nitrogen removal at full-scale using oxidation reduction potential. Water Sci. Technol., 30 (4): 207-210.
Yagci N, Insel G, Tasli R, Artan N, Randall C W, Orhon D. 2006. A new interpretation of ASM2d for modeling of SBR performance for enhanced biological phosphorus removal under different P/HAc ratios. Biotechnol. Bioeng., 93 (2): 258-270, http://dx.doi.org/10.1002/bit. 20701.
Zhou X F, Zhang Y L, Hu M D, Shi W. 2009b. Optimization design for nutrients removal process with activated sludge 2D model. CIESC J., 60(12): 3 122-3 129. (in Chinese with English abstract)
Copyright © Haiyang Xuebao