Cite this paper:
Qing WANG, Zhenyan WANG, Kai LIU, Quanchao CUI, Xingyu SHI. Geochemical characteristics and geological implication of ferromanganese crust from CM6 Seamount of the Caroline Ridge in the Western Pacific[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1605-1621

Geochemical characteristics and geological implication of ferromanganese crust from CM6 Seamount of the Caroline Ridge in the Western Pacific

Qing WANG1,3, Zhenyan WANG1,2,3,4, Kai LIU1,3, Quanchao CUI1,3, Xingyu SHI1,3
1 CAS Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Laboratory for Marine Mineral Resources, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
Ferromanganese crusts (Fe-Mn crusts) grow very slow and can be treated as condensed stratigraphic sections recording paleo-oceanographic environmental information and local key geological events during the mineralization process. Geochronology, textures, mineralogy, and geochemistry of a Fe-Mn crust sample from the CM6 Seamount of the Caroline Ridge in the Western Pacific Ocean were analyzed by means of electron probe microanalysis and X-ray diffraction. The Fe-Mn crust shows three layers in textural characteristics from bottom to top. The lower, middle, and upper layers presence mottled, botryoidal, and columnar textures, respectively. Ferruginous vernadite, Fe hydroxide, amorphous silicate minerals, calcite, quartz, and feldspar are the main minerals of the Fe-Mn crust. Using cobalt chronometry method, the cumulative growth time of the Fe-Mn crust was determined to be 11 Ma or 25 Ma, of which 25 Ma is inconsistent with other lines of age constraint brought by dating of the substrate. The co-existence of abundant silicate minerals and bioclasts in the middle and lower layers of the Fe-Mn crust diluted the ferromanganese oxide deposits, thus affected the texture, minerals, and geochemical characteristics of the Fe-Mn crust. Variations in Mn, Co, Ni, and other elements content and the burial of opal-A recorded the expansion of oxygen minimum zone (OMZ) in the upper layer of the Fe-Mn crust. In addition, the highreflectivity Fe-rich laminae might indicate the surrounding volcanic activity. The Fe-Mn crust sample was determined to be hydrogenic by electron probe micro-analyzer (EPMA). The findings help us understand the geochemical characteristics of the Fe-Mn crust in the Caroline Ridge Seamount in the Western Pacific and the variations of paleo-oceanographic environment clues borne by the Fe-Mn crusts.
Key words:    ferromanganese crust|geochemistry|geological significance|environment influence|seamount   
Received: 2021-03-18   Revised: 2021-04-28
Tools
PDF (5671 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Qing WANG
Articles by Zhenyan WANG
Articles by Kai LIU
Articles by Quanchao CUI
Articles by Xingyu SHI
References:
Bonatti E, Kraemer T F, Rydell H. 1972. Classification and genesis of submarine iron-manganese deposits. In:Horn D R ed. Ferromanganese Deposits on the Ocean Floor. Columbia University National Science Foundation, Washington. p.149-166.
Conrad T, Hein J R, Paytan A, Clague D A. 2017. Formation of Fe-Mn crusts within a continental margin environment. Ore Geology Reviews, 87:25-40, https://doi.org/10.1016/j.oregeorev.2016.09.010.
Conrad T A, Hein J R. 2013. Water depth-composition trends in ferromanganese crusts adjacent to the California margin compared to those in equatorial Pacific crusts. In:AGU Fall Meeting Abstracts. AGU Fall Meeting, AGU, San Francisco, CA, 9-13 December 2013, Abstract OS11d-1678.
Farrell J W, Raffi I, Janecek T R, Murray D W, Levitan M, Dadey K A, Emeis K C, Lyle M, Flores J A, Hovan S. 1995. Late Neogene sedimentation patterns in the eastern equatorial Pacific Ocean. In:Pisias N G, Mayer L A, Janecek T R, Palmer-Julson A, van Andel T H eds. Proceedings of the Ocean Drilling Program, Scientific Results. Ocean Drilling Program, College Station, TX. p.717-756.
Finlayson V A, Konter J G, Konrad K, Koppers A A P, Jackson M G, Rooney T O. 2018. Sr-Pb-Nd-Hf isotopes and 40Ar/39Ar ages reveal a Hawaii-Emperor-style bend in the Rurutu hotspot. Earth and Planetary Science Letters, 500:168-179, https://doi.org/10.1016/j.epsl.2018.08.020.
Halbach P E. 1986. Processes controlling the heavy metal distribution in Pacific ferromanganese nodules and crusts. Geologische Rundschau, 75(1):235-247, https://doi.org/10.1007/BF01770191.
Halbach P E, Jahn A, Cherkashov G. 2017. Marine Co-rich ferromanganese crust deposits:description and formation, occurrences and distribution, estimated world-wide resources. In:Sharma R ed. Deep-Sea Mining. Springer International Publishing, Cham. p.65-141.
Halbach P E, Segl M, Puteanus D, Mangini A. 1983. Co-fluxes and growth rates in ferromanganese deposits from central Pacific seamount areas. Nature, 304(5928):716-719, https://doi.org/10.1038/304716a0.
Hein J R, Bohrson W A, Schulz M S, Noble M, Clague D A. 1992. Variations in the fine-scale composition of a central Pacific ferromanganese crust:paleoceanographic implications. Paleoceanography, 7(1):63-77, https://doi.org/10.1029/91PA02936.
Hein J R, Conrad T, Mizell K, Banakar V K, Frey F A, Sager W W. 2016. Controls on ferromanganese crust composition and reconnaissance resource potential, Ninetyeast Ridge, Indian Ocean. Deep Sea Research Part I:Oceanographic Research Papers, 110:1-19, https://doi.org/10.1016/j.dsr.2015.11.006.
Hein J R, Konstantinova N, Mikesell M, Mizell K, Fitzsimmons J N, Lam P J, Jensen L T, Xiang Y, Gartman A, Cherkashov G, Hutchinson D R, Till C P. 2017. Arctic deep water ferromanganese-oxide deposits reflect the unique characteristics of the Arctic Ocean. Geochemistry, Geophysics, Geosystems, 18(11):3 771-3 800, https://doi.org/10.1002/2017GC007186.
Hein J R, Koschinsky A. 2014. Deep-ocean ferromanganese crusts and nodules. In:Holland H D, Turekian K K eds.Treatise on Geochemistry. 2nd edn. Elsevier, Amsterdam.p.273-291.
Hein J R, Koschinsky A, Bau M, Manheim F T, Kang J K, Roberts L. 2000. Cobalt-rich ferromanganese crusts in the Pacific. In:Cronan D S ed. Handbook of Marine Mineral Deposits. CRC Press, Boca Raton. p.239-279.
Hein J R, Manheim F T, Schwab W C, Davis A S. 1985. Ferromanganese crusts from Necker Ridge, Horizon Guyot and S.P. Lee Guyot:geological considerations. Marine Geology, 69(1-2):25-54, https://doi.org/10.1016/0025-3227(85)90132-X.
Hein J R, Mizell K, Koschinsky A, Conrad T A. 2013. Deepocean mineral deposits as a source of critical metals for high- and green-technology applications:comparison with land-based resources. Ore Geology Reviews, 51:1-14, https://doi.org/10.1016/j.oregeorev.2012.12.001.
Hein J R, Schulz M S, Dunham R E, Stern R J, Bloomer S H. 2008. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific. Journal of Geophysical Research:Solid Earth, 113(B8):B08S14, https://doi.org/10.1029/2007JB005432.
Hein J R, Yeh H W, Gunn S H, Sliter W V, Benninger L M, Wang C H. 1993. Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific Seamount deposits. Paleoceanography, 8(2):293-311, https://doi.org/10.1029/93PA00320.
Hermoyian C S, Owen R M. 2001. Late Miocene-early Pliocene biogenic bloom:evidence from low-productivity regions of the Indian and Atlantic Oceans. Paleoceanography, 16(1):95-100, https://doi.org/10.1029/2000PA000501.
Hou X F, Wang Z Y, Li W J, Liu K, Wang Q. 2020. Mineralogy and geochemistry of ferromanganese crusts of Caroline Ridge CM4 guyot in the Western Pacific. Oceanologia et Limnologia Sinica, 51(5):1 118-1 126. (in Chinese with English abstract)
Iizasa K, Takenouchi S. 1989. Todorokite veinlets in opal-A layers of deep-sea manganese nodules from the northern central Pacific. Mining Geology, 39(217):325-333, https://doi.org/10.11456/shigenchishitsu1951.39.217_325.
Jeong K S, Jung H S, Kang J K, Morgan M L, Hein J R. 2000.Formation of ferromanganese crusts on northwest intertropical Pacific seamounts:electron photomicrography and microprobe chemistry. Marine Geology, 162(2-4):541-559, https://doi.org/10.1016/S0025-3227(99)00091-2.
Josso P, Parkinson I, Horstwood M, Lusty P, Chenery S, Murton B. 2019. Improving confidence in ferromanganese crust age models:a composite geochemical approach.Chemical Geology, 513:108-119, https://doi.org/10.1016/j.chemgeo.2019.03.003.
Josso P, Rushton J, Lusty P, Matthews A, Chenery S, Holwell D, Kemp S J, Murton B. 2020. Late Cretaceous and Cenozoic paleoceanography from north-east Atlantic ferromanganese crust microstratigraphy. Marine Geology, 422:106122, https://doi.org/10.1016/j.margeo.2020.106122.
Kawabe M, Fujio S. 2010. Pacific Ocean circulation based on observation. Journal of Oceanography, 66(3):389-403, https://doi.org/10.1007/s10872-010-0034-8.
Kawabe M, Fujio S, Yanagimoto D. 2003. Deep-water circulation at low latitudes in the western North Pacific. Deep Sea Research Part I:Oceanographic Research Papers, 50(5):631-656, https://doi.org/10.1016/S0967-0637(03)00040-2.
Kawabe M, Fujio S, Yanagimoto D, Tanaka K. 2009. Water masses and currents of deep circulation southwest of the Shatsky Rise in the western North Pacific. Deep Sea Research Part I:Oceanographic Research Papers, 56(10):1 675-1 687, https://doi.org/10.1016/j.dsr.2009.06.003.
Kawahata H, Yamamuro M, Ohta H. 1998. Seasonal and vertical variations of sinking particle fluxes in the West Caroline Basin. Oceanologica Acta, 21(4):521-532, https://doi.org/10.1016/S0399-1784(98)80035-2.
Koschinsky A, Heinrich L, Boehnke K, Cohrs J C, Markus T, Shani M, Singh P, Stegen K S, Werner W. 2018. Deep-sea mining:interdisciplinary research on potential environmental, legal, economic, and societal implications.Integrated Environmental Assessment and Management, 14(6):672-691, https://doi.org/10.1002/ieam.4071.
Koschinsky A, Stascheit A, Bau M, Halbach P. 1997. Effects of phosphatization on the geochemical and mineralogical composition of marine ferromanganese crusts. Geochimica et Cosmochimica Acta, 61(19):4 079-4 094, https://doi.org/10.1016/s0016-7037(97)00231-7.
Koschinsky A, Van Gerven M, Halbach P. 1995. First investigations of massive ferromanganese crusts in the NE Atlantic in comparison with hydrogenetic pacific occurrences. Marine Georesources & Geotechnology, 13(4):375-391, https://doi.org/10.1080/10641199509388294.
Li X J, Wang Z, Yao Y J, Gao H F, Li B. 2017. The tectonic features and evolution of the west Pacific margin. Geology in China, 44(6):1 102-1 114. Manheim F T, Lane-Bostwick C M. 1988. Cobalt in ferromanganese crusts as a monitor of hydrothermal discharge on the Pacific Sea floor. Nature, 335(6185):59-62, https://doi.org/10.1038/335059a0.
Manheim F T, Lane-Bostwick C M. 1989. Chemical Composition of Ferromanganese Crusts in the World Ocean:A Review and Comprehensive Database. U.S. Geological Survey, 89-020, Open-File Report, https://doi.org/10.3133/ofr8920V.1.1.
Marino E, González F J, Kuhn T, Madureira P, Wegorzewski A V, Mirao J, Medialdea T, Oeser M, Miguel C, Reyes J, Somoza L, Lunar R. 2019. Hydrogenetic, diagenetic and hydrothermal processes forming ferromanganese crusts in the Canary Island seamounts and their influence in the metal recovery rate with hydrometallurgical methods. Minerals, 9(7):439, https://doi.org/10.3390/min9070439.
Marino E, González F J, Somoza L, Lunar R, Ortega L, Vázquez J T, Reyes J, Bellido E. 2017. Strategic and rare elements in Cretaceous-Cenozoic cobalt-rich ferromanganese crusts from seamounts in the Canary Island Seamount Province(northeastern tropical Atlantic). Ore Geology Reviews, 87:41-61, https://doi.org/10.1016/j.oregeorev.2016.10.005.
Mortlock R A, Charles C D, Froelich P N, Zibello M A, Saltzman J, Hays J D, Burckle L H. 1991. Evidence for lower productivity in the Antarctic Ocean during the last glaciation. Nature, 351(6323):220-223, https://doi.org/10.1038/351220a0.
Nelson D M, Tréguer P, Brzezinski M A, Leynaert A, Quéguiner B. 1995. Production and dissolution of biogenic silica in the ocean:Revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9(3):359-372, https://doi.org/10.1029/95GB01070.
Pelleter E, Fouquet Y, Etoubleau J, Cheron S, Labanieh S, Josso P, Bollinger C, Langlade J. 2017. Ni-Cu-Co-rich hydrothermal manganese mineralization in the Wallis and Futuna back-arc environment (SW Pacific). Ore Geology Reviews, 87:126-146, https://doi.org/10.1016/j.oregeorev.2016.09.014.
Puteanus D, Halbach P E. 1988. Correlation of Co concentration and growth rate-a method for age determination of ferromanganese crusts. Chemical Geology, 69(1-2):73-85, https://doi.org/10.1016/0009-2541(88)90159-3.
Ragueneau O, Tréguer P, Leynaert A, Anderson R F, Brzezinski M A, Demaster D J, Dugdale R C, Dymond J, Fischer G, François R, Heinze C, Maier-Reimer E, Martin-Jézéquel V, Nelson D M, Quéguiner B. 2000. A review of the Si cycle in the modern ocean:Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy. Global and Planetary Change, 26(4):317-365, https://doi.org/10.1016/S0921-8181(00)00052-7.
Ren X W, Glasby G P, Liu J H, Shi X F, Yin J W. 2007. Finescale compositional variations in a Co-rich Mn crust from the Marcus-Wake Seamount cluster in the western Pacific based on electron microprobe analysis (EMPA). Marine Geophysical Researches, 28(2):165-182, https://doi.org/10.1007/s11001-007-9024-7.
Ridley W I, Rhodes J M, Reid A M, Jakes P, Shih C, Bass M N. 1974. Basalts from leg 6 of the deep-sea drilling project. Journal of Petrology, 15(1):140-159, https://doi.org/10.1093/petrology/15.1.140.
Ronge T A, Steph S, Tiedemann R, Prange M, Merkel U, Nürnberg D, Kuhn G. 2015. Pushing the boundaries:glacial/interglacial variability of intermediate and deep waters in the southwest Pacific over the last 350,000 years. Paleoceanography, 30(2):23-38, https://doi.org/10.1002/2014PA002727.
Usui A, Someya M. 1997. Distribution and composition of marine hydrogenetic and hydrothermal manganese deposits in the northwest Pacific. Geological Society, London, Special Publications, 119(1):177-198, https://doi.org/10.1144/GSL.SP.1997.119.01.12.
Wang Y M, Wang X H, Qu W J, Gao Y S, Gu T X, Fan X T, Andreev S I, Shi X F. 2011. Platinum-group element results for two cobalt-rich seamount crust ultra-fine reference materials:MCPt-1and MCPt-2. Geostandards and Geoanalytical Research, 35(3):341-352, https://doi.org/10.1111/j.1751-908X.2010.00052.x.
Wu G H, Zhou H Y, Chen H L. 2001. Progress in the research of cobalt-rich crusts. Geological Journal of China Universities, 7(4):379-389, https://doi.org/10.3969/j.issn.1006-7493.2001.04.002. (in Chinese with English abstract)
Yeo I A, Howarth S A, Spearman J, Cooper A, Crossouard N, Taylor J, Turnbull M, Murton B J. 2019. Distribution of and hydrographic controls on ferromanganese crusts:Tropic Seamount, Atlantic. Ore Geology Reviews, 114:103131, https://doi.org/10.1016/j.oregeorev.2019.103131.
Zhang G L, Wang S, Zhang J, Luo Q, Li T G. 2017a. Proceedings of subduction system and intra-oceanic volcanism of the Western Pacific. Oceanologia et Limnologia Sinica, 48(6):1 220-1 234. (in Chinese with English abstract)
Zhang G L, Zhang J, Wang S, Zhao J X. 2020a. Geochemical and chronological constraints on the mantle plume origin of the Caroline Plateau. Chemical Geology, 540:119566, https://doi.org/10.1016/j.chemgeo.2020.119566.
Zhang Z Y, Dong D D, Sun W D, Zhang G X, Bai Y L. 2020b. Investigation of an oceanic plateau formation and rifting initiation model implied by the Caroline Ridge on the Caroline Plate, western Pacific. International Geology Review, 63(2):193-207, https://doi.org/10.1080/00206814.2019.1707126.
Zhang Z Y, Dong D D, Zhang G X, Zhang G L. 2017b. Topographic constraints on the subduction erosion of the Yap Arc, Western Pacific. Marine Geology & Quaternary Geology, 37(1):47-50, https://doi.org/10.16562/j.cnki.0256-1492.2017.01.005. (in Chinese with English abstract)
Zhao J R, Chu F Y, Yang K H, Lei J J, Jin L. 2009. Manganese mineral components, compositional characteristics and their implication for genesis of cobalt-rich crust from C seamount in Central Pacific. Journal of Marine Sciences, 27(1):15-21. (in Chinese with English abstract)
Copyright © Haiyang Xuebao