Cite this paper:
Yang QU, Kuidong XU, Tao LI, Maoyu WANG, Huan ZHONG, Tianyu CHEN. Deep-sea coral evidence for dissolved mercury evolution in the deep North Pacific Ocean over the last 700 years[J]. Journal of Oceanology and Limnology, 2021, 39(5): 1622-1633

Deep-sea coral evidence for dissolved mercury evolution in the deep North Pacific Ocean over the last 700 years

Yang QU1, Kuidong XU2, Tao LI1, Maoyu WANG1, Huan ZHONG3,4, Tianyu CHEN1,5
1 State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China;
2 Laboratory of Marine Organism Taxonomy and Phylogeny, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China;
3 State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
4 Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario K9L 0G2, Canada;
5 Center of Deep Sea Research, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
Abstract:
The ocean is an important inventory of anthropogenic mercury (Hg), yet the history of anthropogenic Hg accumulation in the ocean remains largely unexplored. Deep-sea corals are an emerging archive of past ocean chemistry, which take in sinking or suspended particulate organic matter as their food sources. Such organic matter would exchange Hg with the local seawater before being consumed by the deepsea corals. As such, the organics preserved in the coral skeleton may record the Hg evolution of the ambient seawater during the time of coral growth. Here, we report the first data on Hg concentrations variability of a deep-sea proteinaceous coral in the oligotrophic North Pacific at the water depth of 1 249 m, in attempt to understand the transfer of anthropogenic Hg into the deep Pacific ocean over the last seven centuries. We find that the Hg concentrations of different coral growth layers have remained relatively constant albeit with considerable short-term variability through time. The overall stable Hg concentration of the last seven centuries recorded in our sample suggests that anthropogenic pollution is not yet a clearly resolvable component in the deep oligotrophic North Pacific waters, in agreement with recent estimation from modelling works and observational studies of modern seawater profiles. As there is hardly an unambiguous way to separate anthropogenic Hg from the natural background based on recent seawater profiles, our historical data provide valuable information helping to understand the oceanic cycle of Hg through time.
Key words:    deep-sea coral|mercury|deep water|particulate organic matter|anthropogenic perturbation   
Received: 2020-12-14   Revised: 2021-02-05
Tools
PDF (1081 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Yang QU
Articles by Kuidong XU
Articles by Tao LI
Articles by Maoyu WANG
Articles by Huan ZHONG
Articles by Tianyu CHEN
References:
Adkins J F, Griffin S, Kashgarian M, Cheng H, Druffel E R M, Boyle E A, Edwards R L, Shen C C. 2002. Radiocarbon dating of deep-sea corals. Radiocarbon, 44(2):567-580, https://doi.org/10.1017/S0033822200031921.
Agather A M, Bowman K L, Lamborg C H, Hammerschmidt C R. 2019. Distribution of mercury species in the Western Arctic Ocean (U.S. GEOTRACES GN01). Marine Chemistry, 216:103686, https://doi.org/10.1016/j.marchem.2019.103686.
Amos H M, Jacob D J, Streets D G, Sunderland E M. 2013. Legacy impacts of all-time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles, 27(2):410-421, https://doi.org/10.1002/gbc.20040.
Amos H M, Sonke J E, Obrist D, Robins N, Hagan N, Horowitz H M, Mason R P, Witt M, Hedgecock I M, Corbitt E S, Sunderland E M. 2015. Observational and modeling constraints on global anthropogenic enrichment of mercury. Environmental Science & Technology, 49(7):4 036-4 047, https://doi.org/10.1021/es5058665.
Andrews A H, Cordes E E, Mahoney M M, Munk K, Coale K H, Cailliet G M, Heifetz J. 2002. Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska. Hydrobiologia, 471(1):101-110, https://doi.org/10.1023/A:1016501320206.
Archer D E, Blum J D. 2018. A model of mercury cycling and isotopic fractionation in the ocean. Biogeosciences, 15(20):6 297-6 313, https://doi.org/10.5194/bg-15-6297-2018.
Beal S A, Osterberg E C, Zdanowicz C M, Fisher D A. 2015. Ice core perspective on mercury pollution during the past 600 years. Environmental Science & Technology, 49(13):7 641-7 647, https://doi.org/10.1021/acs.est.5b01033.
Blum J D, Drazen J C, Johnson M W, Popp B N, Motta L C, Jamieson A J. 2020. Mercury isotopes identify nearsurface marine mercury in deep-sea trench biota. Proceedings of the National Academy of Sciences of the United States of America, 117(47):29 292-29 298, https://doi.org/10.1073/pnas.2012773117.
Bowman K L, Hammerschmidt C R, Lamborg C H, Swarr G. 2015. Mercury in the North Atlantic Ocean:the U. S. GEOTRACES zonal and meridional sections. Deep Sea Research Part II:Topical Studies in Oceanography, 116:251-261, https://doi.org/10.1016/j.dsr2.2014.07.004.
Bowman K L, Hammerschmidt C R, Lamborg C H, Swarr G J, Agather A M. 2016. Distribution of mercury species across a zonal section of the eastern tropical South Pacific Ocean(U. S. GEOTRACES GP16). Marine Chemistry, 186:156-166, https://doi.org/10.1016/j.marchem.2016.09.005.
Bowman K L, Lamborg C H, Agather A M. 2020. A global perspective on mercury cycling in the ocean. Science of the Total Environment, 710:136166, https://doi.org/10.1016/j.scitotenv.2019.136166.
Boyle J. 2004. A comparison of two methods for estimating the organic matter content of sediments. Journal of Paleolimnology, 31(1):125-127, https://doi.org/10.1023/B:JOPL.0000013354.67645.df.
Bratkič A, Vahčič M, Kotnik J, Vazner K O, Begu E, Woodward E M S, Horvat M. 2016. Mercury presence and speciation in the South Atlantic Ocean along the 40°S transect. Global Biogeochemical Cycles, 30(2):105-119, https://doi.org/10.1002/2015GB005275.
Cossa D, Heimbürger L E, Lannuzel D, Rintoul S R, Butler E C V, Bowie A R, Averty B, Watson R J, Remenyi T. 2011. Mercury in the Southern Ocean. Geochimica et Cosmochimica Acta, 75(14):4 037-4 052, https://doi.org/10.1016/j.gca.2011.05.001.
Cossa D, Heimbürger L E, Pérez F F, García-Ibáñez M I, Sonke J E, Planquette H, Lherminier P, Boutorh J, Cheize M, Barraqueta J L M, Shelley R, Sarthou G. 2018. Mercury distribution and transport in the North Atlantic Ocean along the GEOTRACES-GA01 transect. Biogeosciences, 15(8):2 309-2 323, https://doi.org/10.5194/bg-15-2309-2018.
DeVries T, Primeau F. 2010. An improved method for estimating water-mass ventilation age from radiocarbon data. Earth and Planetary Science Letters, 295(3-4):367-378, https://doi.org/10.1016/j.epsl.2010.04.011.
Elbaz-Poulichet F, Dezileau L, Freydier R, Cossa D, Sabatier P. 2011. A 3500-year record of Hg and Pb contamination in a Mediterranean sedimentary archive (the Pierre Blanche Lagoon, France). Environmental Science & Technology, 45(20):8 642-8 647, https://doi.org/10.1021/es2004599.
Enrico M, Le Roux G, Heimbürger L E, Van Beek P, Souhaut M, Chmeleff J, Sonke J E. 2017. Holocene atmospheric mercury levels reconstructed from peat bog mercury stable isotopes. Environmental Science & Technology, 51(11):5 899-5 906, https://doi.org/10.1021/acs.est.6b05804.
Gill G A, Fitzgerald W F. 1988. Vertical mercury distributions in the oceans. Geochimica et Cosmochimica Acta, 52(6):1 719-1 728, https://doi.org/10.1016/0016-7037(88)90240-2.
Griffin S, Druffel E R M. 1989. Sources of carbon to deep-sea corals. Radiocarbon, 31(3):533-543.
Hare A A, Stern G A, Kuzyk Z Z A, Macdonald R W, Johannessen S C, Wang F Y. 2010. Natural and anthropogenic mercury distribution in marine sediments from Hudson Bay, Canada. Environmental Science & Technology, 44(15):5 805-5 811, https://doi.org/10.1021/es100724y.
Heaton T J, Köhler P, Butzin M, Bard E, Reimer R W, Austin W E N, Ramsey C B, Grootes P M, Hughen K A, Kromer B, Reimer P J, Adkins J, Burke A, Cook M S, Olsen J, Skinner L C. 2020. Marine20-the marine radiocarbon age calibration curve (0-55, 000 cal BP). Radiocarbon, 62(4):779-820, https://doi.org/10.1017/RDC.2020.68.
Henderson G M, Maier-Reimer E. 2002. Advection and removal of 210Pb and stable Pb isotopes in the oceans:a general circulation model study. Geochimica et Cosmochimica Acta, 66(2):257-272, https://doi.org/10.1016/S0016-7037(01)00779-7.
Herndl G J, Reinthaler T. 2013. Microbial control of the dark end of the biological pump. Nature Geoscience, 6(9):718-724, https://doi.org/10.1038/ngeo1921.
Jiao N, Robinson C, Azam F, Thomas H, Baltar F, Dang H, Hardman-Mountford N J, Johnson M, Kirchman D L, Koch B P, Legendre L, Li C, Liu J, Luo T, Luo Y W, Mitra A, Romanou A, Tang K, Wang X, Zhang C, Zhang R. 2014. Mechanisms of microbial carbon sequestration in the ocean-future research directions. Biogeosciences, 11(19):5 285-5 306, https://doi.org/10.5194/bg-11-5285-2014.
Kawahata H. 2002. Suspended and settling particles in the Pacific. Deep Sea Research Part II:Topical Studies in Oceanography, 49(24-25):5 647-5 664, https://doi.org/10.1016/S0967-0645(02)00216-3.
Kawahata H, Yamamuro M, Ohta H. 1998. Seasonal and vertical variations of sinking particle fluxes in the West Caroline Basin Variations saisonnières et verticales des flux de particules dans le bassin des Carolines. Oceanologica Acta, 21(4):521-532, https://doi.org/10.1016/S0399-1784(98)80035-2.
Kawai T, Sakurai T, Suzuki N. 2020. Application of a new dynamic 3-D model to investigate human impacts on the fate of mercury in the global ocean. Environmental Modelling & Software, 124:104599, https://doi.org/10.1016/j.envsoft.2019.104599.
Key R M, Kozyr A, Sabine C L, Lee K, Wanninkhof R, Bullister J L, Feely R A, Millero F J, Mordy C, Peng T H. 2004. A global ocean carbon climatology:results from Global Data Analysis Project (GLODAP). Global Biogeochemical Cycles, 18(4):GB4031, https://doi.org/10.1029/2004GB002247.
Knowles T D J, Monaghan P S, Evershed R P. 2019. Radiocarbon sample preparation procedures and the first status report from the Bristol radiocarbon AMS (BRAMS) facility. Radiocarbon, 61(5):1 541-1 550, https://doi.org/10.1017/RDC.2019.28.
Lamborg C H, Hammerschmidt C R, Bowman K L. 2016. An examination of the role of particles in oceanic mercury cycling. Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences, 374(2081):20150297, https://doi.org/10.1098/rsta.2015.0297.
Lamborg C H, Hammerschmidt C R, Bowman K L, Swarr G J, Munson K M, Ohnemus D C, Lam P J, Heimbürger L E, Rijkenberg M J A, Saito M A. 2014. A global ocean inventory of anthropogenic mercury based on water column measurements. Nature, 512(7512):65-68, https://doi.org/10.1038/nature13563.
Lamborg C H, Hammerschmidt C R, Gill G A, Mason R P, Gichuki S. 2012. An intercomparison of procedures for the determination of total mercury in seawater and recommendations regarding mercury speciation during GEOTRACES cruises. Limnology and Oceanography:Methods, 10(2):90-100, https://doi.org/10.4319/lom.2012.10.90.
Lamborg C H, Swarr G, Hughen K, Jones R J, Birdwhistell S, Furby K, Murty S A, Prouty N, Tseng C M. 2013. Determination of low-level mercury in coralline aragonite by calcination-isotope dilution-inductively coupled plasma-mass spectrometry and its application to Diploria specimens from Castle Harbour, Bermuda. Geochimica et Cosmochimica Acta, 109:27-37, https://doi.org/10.1016/j.gca.2013.01.026.
Lewis J C, Barnowski T F, Telesnicki G J. 1992. Characteristics of carbonates of Gorgonian axes (Coelenterata, Octocorallia). The Biological Bulletin, 183(2):278-296, https://doi.org/10.2307/1542215.
Li T, Robinson L F, Chen T Y, Wang X C T, Burke A, Rae J W B, Pegrum-Haram A, Knowles T D J, Li G J, Chen J, Ng H C, Prokopenko M, Rowland G H, Samperiz A, Stewart J A, Southon J, Spooner P T. 2020. Rapid shifts in circulation and biogeochemistry of the Southern Ocean during deglacial carbon cycle events. Science Advances, 6(42):eabb3807, https://doi.org/10.1126/sciadv.abb3807.
Mason R P, Fitzgerald W F. 1991. Mercury speciation in open ocean waters. Water Air & Soil Pollution, 56(1):779-789, https://doi.org/10.1007/BF00342316.
McMahon K W, McCarthy M D, Sherwood O A, Larsen T, Guilderson T P. 2015. Millennial-scale plankton regime shifts in the subtropical North Pacific Ocean. Science, 350(6267):1 530-1 533, https://doi.org/10.1126/science.aaa9942.
Morel F M M, Kraepiel A M L, Amyot M. 1998. The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29:543-566, https://doi.org/10.1146/annurev.ecolsys.29.1.543.
Munson K M, Lamborg C H, Swarr G J, Saito M A. 2015. Mercury species concentrations and fluxes in the Central Tropical Pacific Ocean. Global Biogeochemical Cycles, 29(5):656-676, https://doi.org/10.1002/2015GB005120.
Resing J A, Sedwick P N, German C R, Jenkins W J, Moffett J W, Sohst B M, Tagliabue A. 2015. Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature, 523(7559):200-203, https://doi.org/10.1038/nature14577.
Risk M J, Heikoop J M, Snow M G, Beukens R. 2002. Lifespans and growth patterns of two deep-sea corals:primnoa resedaeformis and Desmophyllum cristagalli. Hydrobiologia, 471(1):125-131, https://doi.org/10.1023/A:1016557405185.
Roberts J M, Wheeler A, Freiwald A, Cairns S. 2009. Biology. Cold-Water Corals. Cambridge University Press, Cambridge. p.67-107.
Robinson L F, Adkins J F, Frank N, Gagnon A C, Prouty N G, Roark E B, van de Flierdt T. 2014. The geochemistry of deep-sea coral skeletons:a review of vital effects and applications for palaeoceanography. Deep Sea Research Part II:Topical Studies in Oceanography, 99:184-198, https://doi.org/10.1016/j.dsr2.2013.06.005.
Sanei H, Outridge P M, Stern G A, Macdonald R W. 2014. Classification of mercury-labile organic matter relationships in lake sediments. Chemical Geology, 373:87-92, https://doi.org/10.1016/j.chemgeo.2014.02.029.
Selin N E, Jacob D J, Yantosca R M, Strode S, Jaeglé L, Sunderland E M. 2008. Global 3-D land-oceanatmosphere model for mercury:present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. Global Biogeochemical Cycles, 22(2):GB2011, https://doi.org/10.1029/2007GB003040.
Semeniuk K, Dastoor A. 2017. Development of a global ocean mercury model with a methylation cycle:outstanding issues. Global Biogeochemical Cycles, 31(2):400-433, https://doi.org/10.1002/2016GB005452.
Shen J, Feng Q L, Algeo T J, Liu J L, Zhou C Y, Wei W, Liu J S, Them II T R, Gill B C, Chen J B. 2020. Sedimentary host phases of mercury (Hg) and implications for use of Hg as a volcanic proxy. Earth and Planetary Science Letters, 543:116333, https://doi.org/10.1016/j.epsl.2020.116333.
Sherwood O A, Guilderson T P, Batista F C, Schiff J T, McCarthy M D. 2014. Increasing subtropical North Pacific Ocean nitrogen fixation since the Little Ice Age.Nature, 505(7481):78-81, https://doi.org/10.1038/nature12784.
Sherwood O A, Heikoop J M, Scott D B, Risk M J, Guilderson T P, McKinney R A. 2005. Stable isotopic composition of deep-sea gorgonian corals Primnoa spp.:a new archive of surface processes. Marine Ecology Progress Series, 301:135-148, https://doi.org/10.3354/meps301135.
Sherwood O A, Risk M J. 2007. Chapter twelve deep-sea corals:new insights to paleoceanography. Developments in Marine Geology, 1:491-522.
Shi X M, Mason R P, Charette M A, Mazrui N M, Cai P H. 2018. Mercury flux from salt marsh sediments:insights from a comparison between 224Ra/228Th disequilibrium and core incubation methods. Geochimica et Cosmochimica Acta, 222:569-583, https://doi.org/10.1016/j.gca.2017.10.033.
Streets D G, Horowitz H M, Jacob D J, Lu Z F, Levin L, Schure A F H T, Sunderland E M. 2017. Total mercury released to the environment by human activities. Environmental Science & Technology, 51(11):5 969-5 977, https://doi.org/10.1021/acs.est.7b00451.
Strode S, Jaeglé L, Emerson S. 2010. Vertical transport of anthropogenic mercury in the ocean. Global Biogeochemical Cycles, 24(4):GB4014, https://doi.org/10.1029/2009GB003728.
Stuiver M, Reimer P J, Reimer R W. 2021. CALIB 8.2[WWW program] at http://calib.org. Accessed on 2021-3-21.
Sun R Y, Hintelmann H, Liu Y, Li X H, Dimock B. 2016. Two centuries of coral skeletons from the northern South China Sea record mercury emissions from modern Chinese wars. Environmental Science & Technology, 50(11):5 481-5 488, https://doi.org/10.1021/acs.est.5b05965.
Sun R Y, Yuan J J, Sonke J E, Zhang Y X, Zhang T, Zheng W, Chen S, Meng M, Chen J B, Liu Y, Peng X T, Liu C Q. 2020. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nature Communications, 11(1):3 389, https://doi.org/10.1038/s41467-020-17045-3.
Sunderland E M, Krabbenhoft D P, Moreau J W, Strode S A, Landing W M. 2009. Mercury sources, distribution, and bioavailability in the North Pacific Ocean:insights from data and models. Global Biogeochemical Cycles, 23(2):GB2010, https://doi.org/10.1029/2008GB003425.
Sunderland E M, Mason R P. 2007. Human impacts on open ocean mercury concentrations. Global Biogeochemical Cycles, 21(4):GB4022, https://doi.org/10.1029/2006GB002876.
Vogel J S, Southon J R, Nelson D E, Brown T A. 1984. Performance of catalytically condensed carbon for use in accelerator mass spectrometry. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms, 5(2):289-293, https://doi.org/10.1016/0168-583X(84)90529-9.
Wu J F, Rember R, Jin M B, Boyle E A, Flegal A R. 2010. Isotopic evidence for the source of lead in the North Pacific abyssal water. Geochimica et Cosmochimica Acta, 74(16):4 629-4 638, https://doi.org/10.1016/j.gca.2010.05.017.
Zhan T, Zhou X, Cheng W H, He X Q, Tu L Y, Liu X Y, Ge J Y, Xie Y Y, Zhang J, Ma Y F, Li E, Qiao Y S. 2020. Atmospheric mercury accumulation rate in northeastern China during the past 800 years as recorded by the sediments of Tianchi Crater Lake. Environmental Science and Pollution Research, 27(1):571-578, https://doi.org/10.1007/s11356-019-06927-9.
Zhang Y X, Jaeglé L, Thompson L. 2014a. Natural biogeochemical cycle of mercury in a global three-dimensional ocean tracer model. Global Biogeochemical Cycles, 28(5):553-570, https://doi.org/10.1002/2014GB004814.
Zhang Y X, Jaeglé L, Thompson L, Streets D G. 2014b. Six centuries of changing oceanic mercury. Global Biogeochemical Cycles, 28(11):1 251-1 261, https://doi.org/10.1002/2014GB004939.
Zhang Y X, Soerensen A L, Schartup A T, Sunderland E M. 2020. A global model for methylmercury formation and uptake at the base of marine food webs. Global Biogeochemical Cycles, 34(2):e2019GB006348, https://doi.org/10.1029/2019GB006348.
Copyright © Haiyang Xuebao