Cite this paper:
WEI Likun, HUANG Xuxiong, HUANG Zhengzheng. Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources[J]. Journal of Oceanology and Limnology, 2015, 33(1): 99-106

Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources

WEI Likun1, HUANG Xuxiong1,2,3, HUANG Zhengzheng1
1 Key Laboratory of Freshwater Fishery Germplasm Resources, Ministry of Agriculture, China, Shanghai 201306, China;
2 Shanghai Engineering Research Center of Aquaculture, Shanghai 201306, China;
3 Shanghai University Knowledge Service Platform, Shanghai Ocean University Aquatic Animal Breeding Center (ZF1206), Shanghai 201306, China
Abstract:
Microalgae Tetraselmis subcordiformis and Nannochloropsis oculata were cultured at 15, 20, 25, 30, and 35℃ and their properties as potential biofuel resources were examined. The results indicate that T. subcordiformis and N. oculata grew best at 20℃ and 25℃ and yielded the highest total lipids at 20℃ and 30℃, respectively. With increased temperature, neutral lipid and polyunsaturated fatty acids (FAs) decreased while saturated FAs increased, accompanied by increased monounsaturated FAs (MUFAs) in T. subcordiformis and decreased MUFAs in N. oculata; meanwhile, the predicted cetane number of FA methyl esters increased from 45.3 to 47.6 in T. subcordiformis and from 52.3 to 60.3 in N. oculata. Therefore, optimizing culture temperatures is important for improving microalgal biodiesel production.
Key words:    fatty acids (FAs)|lipid class|Nannochloropsis oculata|temperature|Tetraselmis subcordiformis|total lipid   
Received: 2013-12-29   Revised: 2014-04-30
Tools
PDF (344 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WEI Likun
Articles by HUANG Xuxiong
Articles by HUANG Zhengzheng
References:
Ahmad A L, Yasin N H, Derek C J C, Lim J K. 2011. Microalgae as a sustainable energy source for biodiesel production: a review. Renew Sust. Energ. Rev., 15 (1): 584-593.
Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen M B. 2009. A Review of the Potential of Marine Algae as a Source of Biofuel in Ireland. Dublin: Sustainable Energy Ireland- SEI.
Chen G Q, Jiang Y, Chen F. 2008. Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chemistry, 109 (1): 88-94.
Cheng Y X, Jiang X M, Chen X H, Huang X H, Huang X X, Zhou Z G, Zhang D M, Hou Z E, Chen K J. 2005. Live Food Cultivation. China Agriculture, Beijing. 324p. (in Chinese)
Converti A, Casazza A A, Ortiz E Y, Perego P, Borghi M D. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Prog: Process Intensif, 48 (6): 1 146-1 151.
Doubnerová V, Ryšlavá H. 2011. What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Science, 180 (4): 575-583.
Feller U, Crafts-Brandner S J, Salvucci M E. 1998. Moderately high temperatures inhibit ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiology, 116 (2): 539-546.
Guillard R R L. 1975. Culture of phytoplankton for feeding marine invertebrates. In: Smith W L, Chanley M H eds. Culture of Marine Invertebrate Animals. Plenum, New York Press. p.29-60.
Huang X X, Huang Z Z, Wen W, Yan J Q. 2012. Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). J. Appl. Phycol., 25 (1): 129- 137.
Huang X X, Wei L K, Huang Z Z, Yan J Q. 2013. Effect of high ferric ion concentrations on total lipids and lipid characteristics of Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis. J. Appl. Phycol., Published OnlineFirst, June 2013. http://dx.doi. org/10.1007/s10811-013-0056-x.
James G O, Hocart C H, Hillier W, Price G D, Djordjevic M A. 2013. Temperature modulation of fatty acid profiles for biofuel production in nitrogen deprived Chlamydomonas reinhardtii. Bioresour. Technol., 127: 441-447.
Jiang X M. 2002. Effects of temperatures, light intensity and nitrogen concentrations on the growth and fatty acid composition of Nannochloropsis oculata. Mar. Science s, 26 (8): 9-13.(in Chinese with English abstract)
Jiang Y, Chen F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalga Crypthecodinium cohnii. J. Am. Oil Chem. Soc., 77 (6): 613-617.
Leggat W, Whitney S, Yellowlees D. 2004. Is coral bleaching due to the instability of the zooxanthellae dark reactions? Symbiosis, 37 (1-3): 137-153.
Li X, Hu H Y, Zhang Y P. 2011. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour. Technol., 102 (3): 3 098-3 102.
Los D A, Murata N. 2004. Membrane fluidity and its roles in the perception of environmental signals. B BA - Biomembranes, 1666 (1): 142-157.
Piloto-Rodríguez R, Sánchez-Borroto Y, Lapuerta M, Goyos- Pérez L, Verhelst S. 2013. Prediction of the cetane number of biodiesel using artificial neural networks and multiple linear regression. Energ. Convers. Manage, 65: 255-261.
Ramos M J, Fernández C M, Casas A, Rodríguez L, Pérez Á. 2009. Influence of fatty acid composition of raw materials on biodiesel properties. Bioresour. Technol., 100 (1): 261- 268.
Renaud S M, Thinh L V, Lambrinidis G, Parry D L. 2002. Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211 (1): 195-214.
Roleda M Y, Slocombe S P, Leakey R J G, Day J G, Bell E M, Stanley M S. 2013. Effects of temperature and nutrient regimes on biomass and lipid production by six oleaginous microalgae in batch culture employing a two-phase cultivation strategy. Bioresour. Technol., 129: 439-449.
Rousch J M, Bingham S E, Sommerfeld M R. 2003. Changes in fatty acid profiles of thermo-intolerant and thermotolerant marine diatoms during temperature stress. J. Exp. Mar. Biol. Ecol., 295 (2): 145-156.
Sayegh F A Q, Montagnes D J S. 2011. Temperature shifts induce intraspecific variation in microalgal production and biochemical composition. Bioresour. Technol., 102 (3): 3 007-3 013.
Scott S A, Davey M P, Dennis J S, Horst I, Howe C J, Lea- Smith D J, Smith A G. 2010. Biodiesel from algae: challenges and prospects. Curr. Opin. Biotechnol., 21 (3): 277-286.
Sheng J, Kim H W, Badalamenti J P, Zhou C, Sridharakrishnan S, Krajmalnik-Brown R, Rittmann B E, Vannela R. 2011. Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a benchtop photobioreactor. Bioresour. Technol., 1 02 (24): 11 218-11 225.
Vonshak A. 2002. Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology. Taylor and Francis, London.
Wadumesthrige K, Smith J C, Wilson J R, Salley S O, Simon Ng K Y. 2008. Investigation of the parameters affecting the cetane number of biodiesel. J. Am. Oil Chem. Soc., 85 (11): 1 073-1 081.
Wei L K, Huang X X, Huang Z Z, Zhou Z G. 2013. Orthogonal test design for optimization of lipid accumulation and lipid property in Nannochloropsis oculata for biodiesel production. Bioresour. Techno l., 147: 534-538.
Xu D, Gao Z Q, Li F, Fan X, Zhang X W, Ye N H, M S L, Liang C W, Li D M. 2013. Detection and quantitation of lipid in the microalga Tetraselmis subcordiformis (Wille) Butcher with BODIPY 505/515 staining. Bioresour. Technol., 127: 386-390.
Yang Y, Mininberg B, Tarbet A, Weathers P. 2013. At high temperature lipid production in Ettlia oleoabundans occurs before nitrate depletion. Appl. M icrobiol. B iotechnol., 97 (5): 2 263-2 273.
Yao S, Brandt A, Egsgaard H, Gjermansen C. 2012. Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species. Plant Physiol. Biochem., 61: 71-79.
Zhu C J, Lee Y K, Chao T M. 1997. Effects of temperature and growth phase on lipid and biochemical composition of Isochrysis galbana TK1. J. Appl. Phycol., 9 (5): 451- 457.
Copyright © Haiyang Xuebao