Cite this paper:
Nickolai V. SHADRIN, Elena V. ANUFRIIEVA, Francisco AMAT, Oleg Yu. EREMIN. Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes[J]. Journal of Oceanology and Limnology, 2015, 33(6): 1362-1367

Dormant stages of crustaceans as a mechanism of propagation in the extreme and unpredictable environment in the Crimean hypersaline lakes

Nickolai V. SHADRIN1,2, Elena V. ANUFRIIEVA1,2, Francisco AMAT3, Oleg Yu. EREMIN2
1 MLR Key Laboratory of Saline Lake Resources and Environments, Institute of Mineral Resources, Beijing 100037, China;
2 Institute of Marine Biological Research of RAS, Sevastopol 299011, Russia;
3 Instituto de Acuicultura de Torre de la Sal (CSIC), Ribera de Cabanes (Castellon) 12595, Spain
Abstract:
A pool of dormant stages of planktonic organisms in saline lakes is a substantial component in the plankton communities;we need to take it into account to understand plankton dynamics. Hypersaline water bodies in Crimea, the largest peninsula in the Black Sea, constitute a very characteristic and peculiar habitat type in the region. We examined the presence of crustacean resting stages in sediments of dried up sites of the Crimean hypersaline lakes. Sediment samples were taken in 9 different lakes. Experiments performed on the hatching of these resting stages showed the presence of Moina salina (Cladocera), parthenogenetic Artemia and Artemia urmiana (Anostraca), Eucypris mareotica (inflata) (Ostracoda), and Cletocamptus retrogressus (Harpacticoida). Comparing the experimental results obtained with clean dried brine shrimp cysts and those kept in sediment samples, it was noted that clean cysts hatched much faster than those from sediments did. Some components in bottom sediments slow down and desynchronize hatching from resting eggs in different groups of crustaceans. The sediments of different lakes inhibited the nauplii output from Artemia and ostracod resting eggs to different degrees. More data are needed before we can discuss the reasons of this inhibition. The nonsynchronous output of active stages from the bottom resting ones may be an adaptation that allows crustacean species to exist in extreme and unpredictably changing environments, avoiding the risk that all may emerge at once under unsuitable conditions.
Key words:    resting stages|hypersaline waters|Crustacea|Crimea|sediment   
Received: 2014-12-11   Revised: 2015-02-13
Tools
PDF ( KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Nickolai V. SHADRIN
Articles by Elena V. ANUFRIIEVA
Articles by Francisco AMAT
Articles by Oleg Yu. EREMIN
References:
Abatzopoulos T J, Amat F, Baxevanis A D, Belmonte G,Hontoria F, Maniatsi S, Moscatello S, Mura G, Shadrin N V. 2009. Updating geographic distribution of Artemia urmiana Gunther, 1890 (Branchiopoda: Anostraca) in Europe: an integrated and interdisciplinary approach. Int.Rev. Hydrobiol., 94: 560-579.
Anufriieva E, Holynska M, Shadrin N. 2014. Current invasions of Asian Cyclopid species (Copepoda: Cyclopidae) in Crimea, with taxonomical and zoogeographical remarks on the hypersaline and freshwater fauna. Annales Zoologici, 64: 109-130.
Anufriieva E, Shadrin N. 2014. Resting stages of Crustaceans in the Crimean hypersaline lakes (Ukraine) and their ecological role. Acta Geol. Sin. (English Edition), 88 (Supp. 1): 46-49.
Belmonte G, Moscatello S, Batogova E A, Pavlovskaya T,Shadrin N V, Litvinchuk, L F. 2012. Fauna of hypersaline lakes of the Crimea (Ukraine). Thalassia Salentina, 34: 11-24.
Brendonck L, De Meester L. 2003. Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia, 491: 65-84.
Champeau A, Francezon P. 1991. Laying and fecundity of females of the harpacticoid copepod Cletocamptus retrogressus, Schmankevitch, after their survival of drying. C. R. Acad. Sci. Paris, Ser. III, 312 (8): 389-393.
Clegg J S. 1997. Embryos of Artemia franciscana survive four years of continuous anoxia: the case for complete metabolic rate depression. J. Exp. Biol., 200: 467-475.
Dahms H U. 1995. Dormancy in the Copepoda—an overview.Hydrobiologia, 306: 199-211.
Evans M E, Dennehy J J. 2005. Germ banking: bet-hedging and variable release from egg and seed dormancy. Quart.Rev. Biol., 80: 431-451.
Frisch D, Green A J, Figuerola J. 2007. High dispersal capacity of a broad spectrum of aquatic invertebrates via waterbirds. Aquat. Sci., 69: 568-574.
Fryer G. 1996. Diapause, a potent force in the evolution of freshwater crustaceans. Hydrobiologia, 320: 1-14.
Hairston N G Jr, Van Brunt N A, Kearns C M, Engstrom D R. 1995. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology, 76: 1 706-1 711.
Hairston N G Jr. 1996. Zooplankton egg banks as biotic reservoirs in changing environments. Limnol. Oceanogr., 41: 1 087-1 092.
Lopez L C S, Goncёalves D A, Mantovani A, Rios R I. 2002.Bromeliad ostracods pass through amphibian (Scinaxax perpusillus) and mammalian guts alive. Hydrobiologia, 485: 209-211.
Marcus N H. 1984. Recruitment of copepod nauplii into the plankton: importance of diapause eggs and benthic processes. Mar. Ecol. Prog. Ser., 15: 47-54.
Menu F, Roebuck J P, Viala M. 2000. Bet-hedging diapause strategy in stochastic environment. Am. Naturalist, 155: 724-734.
Moscatello S, Belmonte G. 2004. Active and resting stages of zooplankton and its seasonal evolution in a hypersaline temporary pond of the Mediterranean coast (the Vecchia Salina, SE Italy). Sci. Mar., 68: 491-500.
Moscatello S, Belmonte G. 2009. Egg banks in hypersaline lakes of the South-East Europe. Sal. Syst., 5: 3.
Philippi T, Seger J. 1989. Hedging ones evolutionary bets, revisited. Trends Ecol. Evol., 4: 41-44.
Proctor V W, Malone C R. 1965. Further evidence of the passive dispersal of small aquatic organism via the intestinal tract of birds. Ecology, 46: 728-729.
Radzikowski J. 2013. Resistance of dormant stages of planktonic invertebrates to adverse environmental conditions. J. Plankton Res., 35: 707-723.
Rossi V, Bartoli M, Bellavere C, GandolfiA, Salvador E,Menozzi P. 2004. Heterocypris (Crustacea: Ostracoda) from the Isole Pelagie (Sicily, Italy): hatching phenology of resting eggs. Ital. J. Zool., 71: 223-231.
Shadrin N V, Zagorodnya Yu A, Nagorskaya L L, Samchyshyna L. 2009. Finds of Branchinella spinosa (Anostraca,Thamochephalidae) in the salt lakes of the Crimean peninsula (Ukraine). Vestnik Zoologii, 43: 208.
Shadrin N V. 2009. The Crimean hypersaline lakes: towards development of scientific basis of integrated sustainable management. Proceedings of 13th World Lake Conference, Wuhan, China, 1-5 November, 2009: http://www.ilec.or.jp/eg/wlc/wlc13/wlc13papers1.html;http://wldb.ilec.or.jp/data/ilec/WLC13_Papers/S12/s12-1.pdf.
Shadrin N V. 2012. Crustaceans in hypersaline water bodies: specificity of existence and adaptations. In: Proceedings of Int. Conference-school "Actual problems of crustacean study in continental waters", 5-9 November, 2012.Kostroma: Kostroma Publishing House, 2012, 316-319. (in Russian)
Shadrin N V. 2013. Alternative stable states of lake ecosystems and critical salinities: is there a rigid connection? Proc.Zool. Inst. Suppl., 3: 214-221. (in Russian)
Vandekerkhove J, Martens K, Rossetti G, Mesquita-Joanes F,Namiotko T. 2013. Extreme tolerance to environmental stress of sexual and parthenogenetic resting eggs of Eucypris virens (Crustacea, Ostracoda). Freshw. Biol., 58: 237-247.
Vandekerkhove J, Niessen B, Declerck S, Jeppesen E, Porcuna J M C, Brendonck L, De Meester L. 2004. Hatching rate and hatching success with and without isolation of zooplankton resting stages. Hydrobiologia, 526: 235-241.
Vopel K, Dehmlow J, Johansson M, Arlt G. 1998. Effects of anoxia and sulphide on populations of Cletocamptus confluens (Copepoda, Harpacticoida). Mar. Ecol. Prog.Ser., 175: 121-128.
Copyright © Haiyang Xuebao