Cite this paper:
Zorigto B. NAMSARAEV, Svetlana V. ZAITSEVA, Vladimir M. GORLENKO, Ludmila P. KOZYREVA, Bair B. NAMSARAEV. Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau[J]. Journal of Oceanology and Limnology, 2015, 33(6): 1391-1401

Microbial processes and factors controlling their activities in alkaline lakes of the Mongolian plateau

Zorigto B. NAMSARAEV1,2, Svetlana V. ZAITSEVA3, Vladimir M. GORLENKO2, Ludmila P. KOZYREVA3, Bair B. NAMSARAEV3,4
1 National Research Centre "Kurchatov Institute", Akademika Kurchatova pl. 1, Moscow 123182, Russia;
2 Winogradsky Institute of Microbiology RAS, Prosp. 60-let Oktyabrya 7/2, Moscow 117312, Russia;
3 Laboratory of Microbiology, Institute of General and Experimental Biology, Siberian branch RAS, Sakhyanovoi St., 6, Ulan-Ude, Buryat Republic 670047, Russia;
4 Buryat State University, Smolina, 21, Ulan-Ude, Buryat Republic 670000, Russia
Abstract:
A striking feature of the Mongolian plateau is the wide range of air temperatures during a year,-30 to 30℃. High summer temperatures, atmospheric weathering and the arid climate lead to formation of numerous alkaline soda lakes that are covered by ice during 6-7 months per year. During the study period, the lakes had pH values between 8.1 to 10.4 and salinity between 1.8 and 360 g/L. According to chemical composition, the lakes belong to sodium carbonate, sodium chloride-carbonate and sodium sulfate-carbonate types. This paper presents the data on the water chemical composition, results of the determination of the rates of microbial processes in microbial mats and sediments in the lakes studied, and the results of a Principal Component Analysis of environmental variables and microbial activity data. Temperature was the most important factor that influenced both chemical composition and microbial activity. pH and salinity are also important factors for the microbial processes. Dark CO2 fixation is impacted mostly by salinity and the chemical composition of the lake water. Total photosynthesis and sulfate-reduction are impacted mostly by pH. Photosynthesis is the dominant process of primary production, but the highest rate (386 mg C/(L·d)) determined in the lakes studied were 2-3 times lower than in microbial mats of lakes located in tropical zones. This can be explained by the relatively short warm period that lasts only 3-4 months per year. The highest measured rate of dark CO2 assimilation (59.8 mg C/(L·d)) was much lower than photosynthesis. The highest rate of sulfate reduction was 60 mg S/(L·d), while that of methanogenesis was 75.6 μL CH4/(L·d) in the alkaline lakes of Mongolian plateau. The rate of organic matter consumption during sulfate reduction was 3-4 orders of magnitude higher than that associated with methanogenesis.
Key words:    alkaline lakes|microbial mats|Mongolian plateau|biogeochemical cycles   
Received: 2014-12-12   Revised: 2015-04-14
Tools
PDF ( KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Zorigto B. NAMSARAEV
Articles by Svetlana V. ZAITSEVA
Articles by Vladimir M. GORLENKO
Articles by Ludmila P. KOZYREVA
Articles by Bair B. NAMSARAEV
References:
Arinushkina E V. 1970. Handbook on Chemical Analysis of Soil. Moscow State University, Moscow. 482p. (in Russian)
Belyaev S S, Lein A Yu, Ivanov M V. 1981. The role of methanogenic and sulfate-reducing bacteria in the processes of destruction of organic matter. Geokhimiya, (3): 437-445.
Boros E, Horváth Z, Wolfram G, Vörös L. 2014. Salinity and ionic composition of the shallow astatic soda pans in the Carpathian Basin. Ann. Limnol.-Int. J. Lim., 50 (1): 59-69.
Capone D G, Kiene R P. 1988. Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon catabolism. Limnol. Oceanogr., 33:725-749.
Christner B C, Priscu J C, Achberger A M, Barbante C, Carter S P, Christianson K, Michaud A B, Mikucki J A, Mitchell A C, Skidmore M L, Vick-Majors T J, the WISSARD Science Team. 2014. A microbial ecosystem beneath the West Antarctic ice sheet. Nature, 512 (7514): 310-313.
Council T C, Bennett P C. 1993. Geochemistry of ikaite formation at Mono Lake, California: implications for the origin of tufa mounds. Geology, 21 (11): 971-974.
Geladi P. 1989. Analysis of multi-way (multi-mode) data.Chemom. Intell. Lab. Syst., 7 (1-2): 11-30.
Glein C R, Baross J A, Hunter Waite J Jr. 2015. The pH of Enceladus' ocean. Geochim. Cosmochim. Acta, 162: 202-219.
Gorlenko V M, Buruykhaev S P, Matyugina E B, Borzenko S V, Namsaraev Z B, Bryantseva I A, Boldareva E N, Sorokin D Yu, Namsaraev B B. 2010. Major features of microbial communities of meromictic soda lake Doroninskoye (Transbaikalian area) ecosystem.Microbiology, 79 (3): 410-421.
Gorlenko V M, Namsaraev B B, Kulyrova A V, Zavarzina D G, Zhilina T N. 1999. The activity of sulfate-reducing bacteria in bottom sediments of soda lakes of the southeastern Transbaikal region. Microbiology, 68 (5):580-585.
Grant W D. 2004. Introductory chapter: half a lifetime in soda lakes. In: Ventosa A ed. Halophilic Microorganisms.Springer, Heidelberg. p.17-31.
Hsu H W, Postberg F, Sekine Y, Shibuya T, Kempf S, Horányi M, Juhász A, Altobelli N, Suzuki K, Masaki Y, Kuwatani T, Tachibana S, Sirono S I, Moragas-Klostermeyer G, Srama R. 2015. Ongoing hydrothermal activities within Enceladus. Nature, 519 (7542): 207-210.
Ilin A, Raiko T. 2010. Practical approaches to principal component analysis in the presence of missing values. J.Mach. Learn. Res., 11: 1 957-2 000.
Kharaka Y K, Robinson S W, Law L M, Carothers W W. 1984.Hydrogeochemistry of Big Soda Lake, Nevada: an alkaline meromictic desert lake. Geochim. Cosmochim.Acta, 48 (4): 823-835.
Krumbein W E, Cohen Y, Shilo M. 1977. Solar Lake (Sinai). 4.Stromatolitic cyanobacterial mats. Limnol. Oceanogr., 22 (4): 635-656.
Ma Y H, Zhang W Z, Xue Y F, Zhou P J, Ventosa A, Grant W D. 2004. Bacterial diversity of the Inner Mongolian Baer Soda Lake as revealed by 16S rRNA gene sequence analyses. Extremophiles, 8 (1): 45-51.
MacIntyre S, Melack J M. 1982. Meromixis in an equatorial African soda lake. Limnol. Oceanogr., 27 (4): 595-609.
Medová H, Boldareva E N, Hrouzek P, Borzenko S V, Namsaraev Z B, Gorlenko V M, Namsaraev B B, Koblížek M. 2011. High abundances of aerobic anoxygenic phototrophs in saline steppe lakes. FEMS Microbiol.Ecol., 76 (2): 393-400.
Melack J M, Kilham P. 1974. Photosynthetic rates of phytoplankton in East African alkaline, saline Lakes.Limnol. Oceanogr., 19 (5): 743-755.
Namsaraev B B, Dulov L E, Sokolova E N, Zemskaya T I. 1995. Bacterial methane production in the bottom sediments of Lake Baikal. Microbiology, 64 (3): 411-417.
Namsaraev B B, Zhilina T N, Kulyrova A V, Gorlenko V M. 1999. Bacterial methanogenesis in soda lakes of the southeastern Transbaikal region. Microbiology, 68 (5):586-591.
Namsaraev B B. 1993. Distribution of methanogens in marine sediments. Microbiology, 62: 733-738.
Namsaraev Z B, Gorlenko V M, Buryukhaev S P, Barkhutova D D, Dambaev V B, Dulov L E, Sorokin V V, Namsaraev B B. 2010. Water regime and changes of hydrochemical parameters of alkaline saline lake Khilganta (South-Eastern Transbaikalia). Water Res., 37 (4): 477-483.
Oren A, Naftz D L, Palacios P, Wurtsbaugh W A. 2009. Saline lakes around the world: unique systems with unique values. In: 10th ISSLR Conference and 2008 FRIENDS of Great Salt Lake Forum. Utah State University, Salt Lake City. 269p.
Sorokin D Y, Gorlenko V M, Namsaraev B B, Namsaraev Z B, Lysenko A M, Eshinimaev B T, Khmelenina V N, Trotsenko Y A, Kuenen J G. 2004. Prokaryotic communities of the north-eastern Mongolian soda lakes.Hydrobiologia, 522 (1-3): 235-248.
Sorokin Y I. 1999. Radioisotopic Methods in Hydrobiology.Springer-Verlag, Berlin-Heidelberg. 321p.
Trutko S M, Evtushenko L I, Dorofeeva L V, Shlyapnikov M G, Gavrish E Yu, Suzina N E, Akimenko V K. 2003.Microbial processes of cycles C and S in Lake Shira(Khakasia). Microbiology, 72 (3): 259-267.
Tsyrenova D D, Bryanskaya A V, Kozyreva L P, Namsaraev Z B, Namsaraev B B. 2011. Structure and formation properties of the haloalkaliphilic community of Lake Khilganta. Microbiology, 80 (2): 237-243.
Zaitseva S V, Abidueva E Yu, Namsaraev B B, Wang L, Wu L. 2014. Microbial community of the bottom sediments of the brackish lake Beloe (Transbaikal Region).Microbiology, 83 (6): 861-868.
Zaitseva S V, Abidueva E Yu, Buryukhaev S P, Namsaraev B B. 2012. Factors controlling the activity of the microbial community of the alkaline Lake Beloe (Transbaikal region). Microbiology, 81 (4): 468-476.
Zavarzin G A, Zhilina T N, Kevbrin V V. 1999. The alkaliphilic microbial community and its functional diversity.Microbiology, 68: 503-521.
Zeikus J G, Winfrey M R. 1976. Temperature limitation of methanogenesis in aquatic sediments. Appl. Environ.Microbiol., 31 (1): 99-107.
Zolotov M Y. 2007. An oceanic composition on early and today's Enceladus. Geophys. Res. Lett., 34 (23): L23203.
Copyright © Haiyang Xuebao