Cite this paper:
ZHANG Yi, HAN Jinyuan, FENG Yan, MU Jun, BAO Haiyan, Andreas KULIK, Stephanie GROND. Isolation and characterization of bioactive fungi from shark Carcharodon carcharias' gill with biopharmaceutical prospects[J]. Journal of Oceanology and Limnology, 2016, 34(1): 186-199

Isolation and characterization of bioactive fungi from shark Carcharodon carcharias' gill with biopharmaceutical prospects

ZHANG Yi1,2,3,4, HAN Jinyuan2, FENG Yan1, MU Jun5, BAO Haiyan2, Andreas KULIK6, Stephanie GROND4
1 College of Food Science and Technology, Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China;
2 School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China;
3 School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China;
4 Institute of Organic Chemistry, University of T黚ingen, T黚ingen 72076, Germany;
5 Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316022, China;
6 Inter-Faculty Institute for Microbiology and Infectious Medicine, University of T黚ingen, T黚ingen 72076, Germany
Abstract:
Until recently, little was known about the fungi found in shark gills and their biomedicinal potential. In this article, we described the isolation, bioactivity, diversity, and secondary metabolites of bioactive fungi from the gill of a shark (Carcharodon carcharias). A total of 115 isolates were obtained and grown in 12 culture media. Fifty-eight of these isolates demonstrated signifi cant activity in four antimicrobial, pesticidal, and cytotoxic bioassay models. Four randomly selected bioactive isolates inhibited human cancer cell proliferation during re-screening. These active isolates were segregated into 6 genera using the internal transcribed spacer-large subunit (ITS-LSU) rDNA-sequence BLAST comparison. Four genera, Penicillium , Aspergillus , Mucor, and Chaetomium were the dominant taxa. A phylogenic tree illustrated their intergenera and intragenera genetic diversity. HPLC-DAD-HRMS analysis and subsequent database searching revealed that nine representative strains produced diverse bioactive compound profi les. These results detail the broad range of bioactive fungi found in a shark’s gills, revealing their biopharmaceutical potential. To the best of our knowledge, this is the fi rst study characterizing shark gill fungi and their bioactivity.
Key words:    bioactive fungi|shark gill|isolation|bioassay|taxonomy|bioactive metabolites   
Received: 2014-07-17   Revised: 2014-12-01
Tools
PDF (1124 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by ZHANG Yi
Articles by HAN Jinyuan
Articles by FENG Yan
Articles by MU Jun
Articles by BAO Haiyan
Articles by Andreas KULIK
Articles by Stephanie GROND
References:
Abbott W S. 1925. A method of computing the eff ectiveness of an insecticide. J. Econ. Entomol ., 18 (2): 265-267.
Alam M Z, Ahmad S, Malik A. 2009. Genotoxic and mutagenic potential of agricultural soil irrigated with tannery effl uents at Jajmau (Kanpur), India. Arch. Environ .Contam. Toxicol ., 57 (3): 463-476.
Armstrong E, Yan L M, Boyd K G, Wright P C, Burgess J G. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461 (1-3): 37-40.
Baker P W, Kennedy J, Dobson A D, Marchesi J R. 2009.Phylogenetic diversity and antimicrobial activities of fungi associated with Haliclona simulans isolated from Irish coastal waters. Mar. Biotechnol ., 11 (4): 540-547.
Bartus H R, Mirabelli C K, Auerbach J I, Shatzman A R, Taylor D P, Johnson R K, Rosenberg M, Crooke S T. 1984.Improved genetically modifi ed Escherichia coli strain for prescreening antineoplastic agents. Antimicrob. Agents .Chemother ., 25 (5): 622-625.
Blunt J W, Copp B R, Munro M H, Northcote P T, Prinsep M R. 2011. Marine natural products. Nat. Prod. Rep ., 28 (2): 196-268.
Buckingham J. 2011. Dictionary of Natural Products on DVD. version 20: 2. Chapman and Hall/CRC, London.
Bugni T S, Ireland C M. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Nat. Prod. Rep ., 21 (1): 143-163.
Carballo J L, Hernández-Inda Z L, Pérez P, García-Grávalos M D. 2002. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products.BMC Biotechnol ., 2 : 17.
De Maddalena A. 2007. Great White Sharks Preserved in European Museums. Cambridge Scholars Publishing,Newcastle.
Ding B, Yin Y, Zhang F L, Li Z Y. 2011. Recovery and phylogenetic diversity of culturable fungi associated with marine sponges Clathrina luteoculcitella and Holoxea sp. in the South China Sea. Mar. Biotechnol ., 13 (4): 713-721.
Du L, Feng T, Zhao B Y, Li D H, Cai S X, Zhu T J, Wang F P,Xiao X, Gu Q Q. 2010. Alkaloids from a deep ocean sediment-derived fungus Penicillium sp. and their antitumor activities. J. Antibiot. ( Tokyo ), 63 (4): 165-170.
Hentschel U, Piel J, Degnan S M, Taylor M W. 2012. Genomic insights into the marine sponge microbiome. Nat. Rev .Microbiol ., 10 (9): 641-654.
Hu Z Y, Liu S Z, Huang H, Huang C S, Su W J. 2000. A rapid screening assay for insecticidal antibiotic produced by marine actinomycetes. Mar. Sci. Bul. ( Haiyang Tongbao ), 19 (4): 36-41. (in Chinese with English abstract)
Knickle C, Billingsley L, DiVittorio K. 2011. Biological profi les basking shark. Florida Museum of Natural History. http://www.fl mnh.ufl .edu/fi sh/Gallery/Descript/ baskingshark/baskingshark.html. Retrieved 2011-12-21.
Kobayashi H, Namikoshi M, Yoshimoto T, Yokochi T. 1996. A screening method for antimitotic and antifungal substances using conidia of Pyricularia oryzae, modifi cation and application to tropical marine fungi. J .Antibiot. ( Tokyo ), 49 (9): 873-879.
Kobayashi J, Ishibashi M. 1993. Bioactive metabolites of symbiotic marine microorganisms. Chem. Rev ., 93 (5): 1 753-1 769.
Li G, Lin Y. 2004. Diff erential DNA repair test for screening of the anti-tumor marine microorganisms. Chin. J. Antibiot. ( Zhongguo Kangshengsu Zazhi ), 29 (8): 449-451. (in Chinese with English abstract)
Menezes C B A, Bonugli-Santos R C, Miqueletto P B, Passarini M R Z, Silva C H, Justo M R, Leal R R, Fantinatti-Garboggini F, Oliveira V M, Berlinck R G S, Sette L D. 2010. Microbial diversity associated with algae, ascidians and sponges from the north coast of São Paulo state,Brazil. Microbiol. Res ., 165 (6): 466-482.
Meng Q W, Su J X, Li W D. 1987. Comparative Anatomy of Fish. Science Press, Beijing. (in Chinese)
Mohammed Y S, Luckner M. 1963. The structure of cyclopenin and cyclopenol, metabolic products from P enicillium cyclopium westling and P enicillium viridicatum westling.Tetrahedron Lett ., 4 (28): 1 953-1 958.
Mueller H, Kassack M U, Wiese M. 2004. Comparison of the usefulness of the MTT, ATP, and calcein assays to predict the potency of cytotoxic agents in various human cancer cell lines. J. Biomol. Screen ., 9 (6): 506-515.
Passarini M R Z, Santos C, Lima N, Berlinck R G S, Sette L D. 2013. Filamentous fungi from the Atlantic marine sponge Dragmacidon reticulatum. Arch. Microbiol ., 195 (2): 99- 111.
Peterson S W. 2012. Aspergillus and Penicillium identifi cation using DNA sequences: barcode or MLST? Appl .Microbiol. Biotechnol ., 95 (2): 339-344.
Pieter S S, Robert V. 1983. Roquefortine, an intermediate in the biosynthesis of oxaline in cultures of Penicillium oxalicum. J. Chem. Soc ., Chem. Comm ., (10): 560-561.
Pinkerton F, Strobel G. 1976. Serinol as an activator of toxin production in attenuated cultures of Helminthosporium sacchari. Proc. Natl. Acad. Sci. U. S. A ., 73 (11): 4 007- 4 011.
Proksch P, Putz A, Ortlepp S, Kjer J, Bayer M. 2010. Bioactive natural products from marine sponges and fungal endophytes. Phytochem. Rev ., 9 (4): 475-489.
Raghukumar C. 2008. Marine fungal biotechnology: an ecological perspective. Fungal Divers ., 31 : 19-35.
Strobel G, Yang X, Sears J, Kramer R, Sidhu R S, Hess W M. 1996. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology, 142 (2): 435-440.
Swathi J, Narendra K, Sowjanya K M, Satya A K. 2013.Marine fungal metabolites as a rich source of bioactive compounds. Afr. J. Biochem. Res ., 7 (10): 184-196.
Tamura K, Dudley J, Nei M, Kumar S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol ., 24 (8): 1 596-1 599.
Thompson J D, Gibson T J, Plewniak F, Jeanmougin F, Higgins D G. 1997. The CLUSTAL_X windows interface: fl exible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic. Acids. Res ., 25 (24): 4 876- 4 882.
White T J, Bruns T, Lee S, Taylor J. 1990. Amplifi cation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In : Innis M A G D, Sninsky J J, White T J eds. Pcr Protocols: A Guide to Methods and Applications. 1 st edn. Academic Press, New York. p.315-322.
Wiese J, Ohlendorf B, Blümel M, Schmaljohann R, Imhoff J F. 2011. Phylogenetic identifi cation of fungi isolated from the marine sponge Tethya aurantium and identifi cation of their secondary metabolites. Mar. Drugs, 9 (4): 561-585.
Xin Z H, Fang Y, Du L, Zhu T, Duan L, Chen J, Gu Q Q, Zhu W M. 2007. Aurantiomides A-C, quinazoline alkaloids from the sponge-derived fungus Penicillium aurantiogriseum SP0-19. J. Nat. Prod ., 70 (5): 853-855.
Xiong L, Li J, Kong F. 2004. Streptomyces sp. 173, an insecticidal micro-organism from marine. Lett. Appl .Microbiol ., 38 (1): 32-37.
Xu Y J, Yan X J. 2006. Research advances in chemical ecology of marine microorganisms. Chin. J. Appl. Ecol ., 17 (12): 2 436-2 440. (in Chinese with English abstract)
Zhang Y, Mu J, Han J, Gu X. 2012. An improved brine shrimp larvae lethality microwell test method. Toxicol. Mech .Methods ., 22 (1): 23-30.
Zhou K, Zhang X, Zhang F L, Li Z Y. 2011. Phylogenetically diverse cultivable fungal community and polyketide synthase (PKS), non-ribosomal peptide synthase (NRPS) genes associated with the South China Sea sponges.Microb. Ecol ., 62 (3): 644-654.
Copyright © Haiyang Xuebao