Cite this paper:
DONG Xuewei, HE Qingfang, PENG Zhenying, YU Jinhui, BIAN Fei, LI Youzhi, BI Yuping. Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes[J]. Journal of Oceanology and Limnology, 2016, 34(4): 772-780

Production of γ-linolenic acid and stearidonic acid by Synechococcus sp. PCC7002 containing cyanobacterial fatty acid desaturase genes

DONG Xuewei1, HE Qingfang2,3, PENG Zhenying2, YU Jinhui2, BIAN Fei2, LI Youzhi1, BI Yuping2
1 College of Life Science and Technology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning 530004, China;
2 Biotechnology Research Center, Shandong Academy of Agricultural Science, Key Laboratory for Genetic Improvement of Crop, Animal and Poultry of Shandong Province, Key Laboratory of Crop Genetic Improvement and Biotechnology, Huanghuaihai, Ministry of Agriculture, Jinan 250100, China;
3 Department of Applied Science, University of Arkansas, Little Rock, Arkansas 72204, US
Abstract:
Genetic modification is useful for improving the nutritional qualities of cyanobacteria. To increase the total unsaturated fatty acid content, along with the ratio of ω-3/ω-6 fatty acids, genetic engineering can be used to modify fatty acid metabolism. Synechococcus sp. PCC7002, a fast-growing cyanobacterium, does not contain a Δ6 desaturase gene and is therefore unable to synthesize γ-linolenic acid (GLA) and stearidonic acid (SDA), which are important in human health. In this work, we constructed recombinant vectors Syd6D, Syd15D and Syd6Dd15D to express the Δ15 desaturase and Δ6 desaturase genes from Synechocystis PCC6803 in Synechococcus sp. PCC7002, with the aim of expressing polyunsaturated fatty acids. Overexpression of the Δ15 desaturase gene in Synechococcus resulted in 5.4 times greater accumulation of α-linolenic acid compared with the wild-type while Δ6 desaturase gene expression produced both GLA and SDA. Co-expression of the two genes resulted in low-level accumulation of GLA but much larger amounts of SDA, accounting for as much to 11.64% of the total fatty acid content.
Key words:    Synechococcus sp. PCC7002|Synechocystis sp. PCC6803|Δ15 fatty acid desaturase|Δ6 fatty acid desaturase|polyunsaturated fatty acids   
Received: 2014-12-15   Revised: 2015-02-25
Tools
PDF (491 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by DONG Xuewei
Articles by HE Qingfang
Articles by PENG Zhenying
Articles by YU Jinhui
Articles by BIAN Fei
Articles by LI Youzhi
Articles by BI Yuping
References:
Bakowska-Barczak A M, Schieber A, Kolodziejczyk P. 2009.Characterization of Canadian black currant (Ribes nigrumL.) seed oils and residues. J. Agric. Food Chem., 57 (24):11 528-11 536.
Banz W J, Davis J E, Clough R W, Cheatwood J L. 2012.Stearidonic acid: is there a role in the prevention andmanagement of type 2 diabetes mellitus? J. Nutr., 142 (3):635S-640S.
Becker E W. 1994. Microalgae: Biotechnology andMicrobiology. Cambridge University Press, Cambridge.293p.
Bernstein H C, Konopka A, Melnicki M R, Hill E A, Kucek LA, Zhang S Y, Shen G Z, Bryant D A, Beliaev A S. 2014.Effect of mono-and dichromatic light quality on growthrates and photosynthetic performance of Synechococcussp. PCC 7002. Front Microbiol., 5: 488.
Bligh E G, Dyer W J. 1959. A rapid method of total lipidextraction and purification. Can. J. Biochem. Physiol.,37 (8): 911-917.
Boyanapalli R, Bullerjahn G S, Pohl C, Croot P L, Boyd P W,McKay R M L. 2007. Luminescent whole-cellcyanobacterial bioreporter for measuring Fe availabilityin diverse marine environments. Appl. Environ.Microbiol., 73 (3): 1 019-1 024.
Chen G, Qu S J, Wang Q, Bian F, Peng Z Y, Zhang Y, Ge H T,Yu J H, Xuan N, Bi Y P, He Q F. 2014. Transgenicexpression of delta-6 and delta-15 fatty acid desaturasesenhances omega-3 polyunsaturated fatty acid accumulationin Synechocystis sp. PCC6803. Biotechnol. Biofuels, 7: 32.
Davidson M H. 2013. Omega-3 fatty acids: new insights intothe pharmacology and biology of docosahexaenoic acid,docosapentaenoic acid, and eicosapentaenoic acid. Curr.Opin. Lipidol., 24 (6): 467-474.
Davies F K, Work V H, Beliaev A S, Posewitz M C. 2014.Engineering limonene and bisabolene production in wildtype and a glycogen-deficient mutant of Synechococcussp. PCC 7002. Front Bioeng. Biotechnol., 2: 21.
Eckert H, La Vallee B, Schweiger B J, Kinney A J, Cahoon EB, Clemente T. 2006. Co-expression of the borage Δ6desaturase and the Arabidopsis Δ15 desaturase results inhigh accumulation of stearidonic acid in the seeds oftransgenic soybean. Planta, 224 (5): 1 050-1 057.
Gallardo M A, Cárcamo J G, Hiller B, Nuernberg G, NuernbergK, Dannenberger D. 2015. Expression of lipid metabolismrelated genes in subcutaneous adipose tissue from Chilotalambs grazing on two different pasture types. Eur. J. LipidSci. Technol., 11 7 (1): 23-30, http://dx.doi.org/10.1002/ejlt.201400033.
Graham I A, Larson T, Napier J A. 2007. Rational metabolicengineering of transgenic plants for biosynthesis ofomega-3 polyunsaturates. Curr. Opin. Biotechnol., 18 (2):142-147.
Harris W S. 2012. Stearidonic acid-enhanced soybean oil: aplant-based source of (n-3) fatty acids for foods. J. Nutr.,142 (3): 600S-604S.
Jacobsen J H, Frigaard N U. 2014. Engineering ofphotosynthetic mannitol biosynthesis from CO2 in acyanobacterium. Metab. Eng., 21: 60-70.
Kenyon C N. 1972. Fatty acid composition of unicellularstrains of blue-green algae. J. Bact eriol., 109 (2): 827-834.
Khozin-Goldberg I, Iskandarov U, Cohen Z. 2011. LC-PUFAfrom photosynthetic microalgae: occurrence, biosynthesis,and prospects in biotechnology. Appl. Microbiol.Biotechnol., 91 (4): 905-915.
Kim S H, Park J S, Kim S Y, Kim J B, Roh K H, Kim H U, LeeK R, Kim J B. 2014. Functional characterization ofpolyunsaturated fatty acid delta 6-desaturase and elongasegenes from the black seabream (Acanthopagrusschlegelii). Cell Biochem. Biophys., 68 (2): 335-346.
Lazic M, Inzaugarat M E, Povero D, Zhao I C, Chen M,Nalbandian M, Miller Y I, Cherñavsky A C, Feldstein A E,Sears D D. 2014. Reduced dietary omega-6 to omega-3fatty acid ratio and 12/15-lipoxygenase deficiency areprotective against chronic high fat diet-inducedsteatohepatitis. PLoS One, 9 (9): e107658.
Lee J H, O'Keefe J H, Lavie C J, Harris W S. 2009. Omega-3fatty acids: cardiovascular benefits, sources andsustainability. Nat. Rev. Cardiol., 6 (12): 753-758.
Lenihan-Geels G, Bishop K S, Ferguson L R. 2013. Alternativesources of omega-3 fats: can we find a sustainablesubstitute for fish? Nutrients, 5 (4): 1 301-1 315.
Liu X, Sheng J, Curtiss R III. 2011. Fatty acid production ingenetically modified cyanobacteria. Proc. Natl. Acad. Sci.USA, 108(17): 6 899-6 904.
Maslova I P, Muradyan E A, Lapina S S, Klyachko-Gurvich GL, Los D A. 2004. Lipid fatty acid composition andthermophilicity of cyanobacteria. Russ. J. Plant Physiol.,51(3): 353-360.
McNeely K, Xu Y, Bennette N, Bryant D A, Dismukes G C.2010. Redirecting reductant flux into hydrogen productionvia metabolic engineering of fermentative carbonmetabolism in a cyanobacterium. Appl. Environ.Microbiol., 76 (15): 5 032-5 038.
Meesapyodsuk D, Qiu X. 2012. The front-end desaturase:structure, function, evolution and biotechnological use.Lipids, 47 (3): 227-237.
Möllers K B, Cannella D, Jørgensen H, Frigaard N U. 2014.Cyanobacterial biomass as carbohydrate and nutrientfeedstock for bioethanol production by yeast fermentation.Biotechnol. Biofuels, 7: 64.
Murata N, Deshnium P, Tasaka Y. 1996. Biosynthesis ofgamma-linolenic acid in the cyanobacterium Spirulinaplatensis, in γ-linolenic acid. In: Huang Y S, Milles D Eeds. AOCS Press, Champaign. p.22-32.
Murata N, Wada H. 1995. Acyl-lipid desaturases and theirimportance in the tolerance and acclimatization to cold ofcyanobacteria. Biochem. J., 308 (1): 1-8.
Nakamura Y, Kaneko T, Hirosawa M, Miyajima N, Tabata S.1998. CyanoBase, a www database containing thecomplete nucleotide sequence of the genome ofSynechocystis sp. strain PCC6803. Nucl. Acids Res.,26 (1): 63-67.
Reddy A S, Nuccio M L, Gross L M, Thomas T L. 1993.Isolation of a Δ6-desaturase gene from the cyanobacteriumsynechocystis sp. strain PCC 6803 by gain-of-functionexpression in Anabaena sp. strain PCC 7120. Plant Mol.Biol., 22 (2): 293-300.
Reddy A S, Thomas T L. 1996. Expression of a cyanobacterialΔ6-desaturase gene results in γ-linolenic acid productionin transgenic plants. Nat. Biotechnol., 14 (5): 639-642.
Reed D W, Schafer U A, Covello P S. 2000. Characterizationof the Brassica napus extraplastidial linoleate desaturaseby expression in Saccharomyces cerevisiae. PlantPhysiol., 122 (3): 715-720.
Sato S, Xing A Q, Ye X G, Schweiger B, Kinney A, Graef G,Clemente T. 2004. Production of γ-linolenic acid andstearidonic acid in seeds of marker-free transgenicsoybean. Crop Sci., 44 (2): 646-652.
Sayanova O V, Beaudoin F, Michaelson L V, Shewry P R,Napier J A. 2003. Identification of primula fatty acid delta6-desaturases with n-3 substrate preferences. FEBS Lett.,542 (1-3): 100-104.
Simon D, Eng P A, Borelli S, Kägi R, Zimmermann C, ZahnerC, Drewe J, Hess L, Ferrari G, Lautenschlager S, WüthrichB, Schmid-Grendelmeier P. 2014. Gamma-linolenic acidlevels correlate with clinical efficacy of evening primroseoil in patients with atopic dermatitis. Adv. Ther., 31 (2):180-188.
Stanier R Y, Kunisawa R, Mandel M, Cohen-Bazire G. 1971.Purification and properties of unicellular blue-green algae(order Chroococcales). Bacteriol. Rev., 35 (2): 171-205.
Stevens S E Jr, Patterson C O P, Myers J. 1973. The productionof hydrogen peroxide by blue-green algae: a survey. J.Phycol., 9 (4): 427-430.
Takeyama H, Takeda D, Yazawa K, Yamada A, Matsunaga T.1997. Expression of the eicosapentaenoic acid synthesisgene cluster from Shewanella sp. in a transgenic marinecyanobacterium, Synechococcus sp. Microbiology,143(8): 2 725-2 731.
Tan L, Meesapyodsuk D, Qiu X. 2011. Molecular analysis ofΔ6 desaturase and Δ6 elongase from Conidiobolusobscurus in the biosynthesis of eicosatetraenoic acid, a ω3fatty acid with nutraceutical potentials. Appl. Microbiol.Biotechnol., 90 (2): 591-601.
Tasset-Cuevas I, Fernández-Bedmar Z, Lozano-Baena M D,Campos-Sánchez J, de Haro-Bailón A, Muñoz-Serrano A,Alonso-Moraga Á. 2013. Protective effect of borage seedoil and gamma linolenic acid on DNA: in vivo and in vitrostudies. PLoS One, 8 (2): e56986.
Therien J B, Zadvornyy O A, Posewitz M C, Bryant D A,Peters J W. 2014. Growth of Chlamydomonas reinhardtiiin acetate-free medium when co-cultured with alginateencapsulated,acetate-producing strains of Synechococcussp. PCC 7002. Biotechnol. Biofuels, 7: 154.
Ursin V M. 2003. Modification of plant lipids for humanhealth: development of functional land-based omega-3fatty acids. J. Nutr., 133 (12): 4 271-4 274.
Wang H S, Yu C, Tang X F, Zhu Z J, Ma N N, Meng Q W.2014. A tomato endoplasmic reticulum (ER)-typeomega-3 fatty acid desaturase (LeFAD3) functions inearly seedling tolerance to salinity stress. Plant Cell Rep.,33 (1): 131-142.
Yu C H, Wang H S, Yang S, Tang X F, Duan M, Meng Q W.2009. Overexpression of endoplasmic reticulum omega-3fatty acid desaturase gene improves chilling tolerance intomato. Plant Physiol. Biochem., 47 (11-12): 1 102-1 112.
Zhang M, Barg R, Yin M G, Gueta-Dahan Y, Leikin-Frenkel A,Salts Y, Shabtai S, Ben-Hayyim G. 2005. Modulated fattyacid desaturation via overexpression of two distinct ω-3desaturases differentially alters tolerance to variousabiotic stresses in transgenic tobacco cells and plants.Plant J., 44 (3): 361-371.
Copyright © Haiyang Xuebao