Cite this paper:
Marjan ESMAEILZADEH, Abdolreza KARBASSI, Faramarz MOATTAR. Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran[J]. Journal of Oceanology and Limnology, 2016, 34(4): 810-820

Heavy metals in sediments and their bioaccumulation in Phragmites australis in the Anzali wetland of Iran

Marjan ESMAEILZADEH1, Abdolreza KARBASSI2, Faramarz MOATTAR1
1 Department of Environmental Science, Faculty of Environment and Energy, Tehran Science and Research Branch, Islamic Azad University, Tehran, Iran;
2 Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
Abstract:
Accumulation of metals in both sediments and Phragmites australis organs was studied. Samples were collected from seven stations located in Anzali wetland, Iran. The samples were analyzed by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that concentration of the studied metals (except As and Cd) were higher in sediments than in P. australis organs. Metal accumulation was found to be significantly (P <0.05) higher in roots than in above-ground organs of P. australis. The bioaccumulation factor (BAF) and the transfer factor (TF) also verified the highest rate of metal accumulation in roots and their reduced mobility from roots to the above-ground organs. Pearson correlation coefficient showed significant relationships between metal concentrations in sediments and those in plant organs. It should be pointed out that sediment and plant samples exhibited higher metal concentrations in eastern and central parts than in western and southern parts of the wetland. The mean concentrations of all studied elements (except for Fe, V and Al) were higher in these sediment samples than in the Earth's crust and shale. High accumulation of metals in P. australis organs (roots and shoots) is indicative of their high bioavailability in sediments of the wetland. The correlation between metal concentrations in sediments and in P. australis indicates that plant organs are good bioindicators of metal pollution in sediments of Anzali wetland.
Key words:    transfer factor|bioaccumulation factor|aquatic plant|phytotoxic level|trace elements   
Received: 2015-04-18   Revised: 2015-06-01
Tools
PDF (512 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by Marjan ESMAEILZADEH
Articles by Abdolreza KARBASSI
Articles by Faramarz MOATTAR
References:
Abdallah M A M, Mohamed A A. 2015. Assessment of heavy metals by sediment quality guideline in surficial sediments of Abu Qir Bay southeastern Mediterranean sea, Egypt. Environ. Earth Sci., 73 (7): 3 603-3 609.
Allen S E. 1989. Chemical Analysis of Ecological Material. Blackwell Scientific Publications, Oxford. 368p.
Arienzo M, Toscano F, Di Fraia M, Caputi L, Sordino P, Guida M, Aliberti F, Ferrara L. 2014. An assessment of contamination of the Fusaro Lagoon (Campania Province, southern Italy) by trace metals. Environ. Monit. Assess., 186 (9): 5 731-5 747.
Bai J H, Xiao R, Zhao Q Q, Lu Q Q, Wang J J, Reddy K R. 2014. Seasonal dynamics of trace elements in tidal salt marsh soils as affected by the flow-sediment regulation regime. PLoS One, 9 (9): e107738, http://dx.doi.org/10.1371/journal.pone.0107738.
Baldantoni D, Alfani A, Di Tommasi P, Bartoli G, Virzo De Santo A. 2004. Assessment of macro and microelement accumulation capability of two aquatic plants. Environ. Pollut., 130 (2): 149-156.
Benavides M P, Gallego S M, Tomaro M L. 2005. Cadmium toxicity in plants. Braz. J. Plant Physiol., 17 (1): 21-34.
Bonanno G, Lo Giudice R. 2010. Heavy metal bioaccumulation by the organs of Phragmites australis (common Reed) and their potential use as contamination indicators. Ecol. Indic., 10 (3): 639-645.
Bonanno G. 2011. Trace element accumulation and distribution in the organs of Phragmites australis (common Reed) and biomonitoring applications. Ecotoxicol. Environ. Saf., 74 (4): 1 057-1 064.
Bonanno G. 2012. Arundo donax as a potential biomonitor of trace element contamination in water and sediment. Ecotoxicol. Environ. Saf., 80: 20-27.
Calace N, Ciardullo S, Maria Petronio B, Pietrantonio M, Abbondanzi F, Campisi T, Cardellicchio N. 2005. Influence of chemical parameters (heavy metals, organic matter, sulphur and nitrogen) on toxicity of sediments from the Mar Piccolo (Taranto, Ionian Sea, Italy). Microchem. J., 79 (1-2): 243-248.
Champan P M. 2007. Determining when contamination is pollution-weight of evidence determinations for sediments and effluents. Environ. Int., 33 (4): 492-501.
Chaney R L. 1989. Toxic element accumulation in soils and crops: protecting soil fertility and agricultural foodchains. In: Bar-Yosef B, Barrow N J, Goldshimd J eds. Inorganic Contaminants in the Vadose Zone. Springer-Verlag, Berlin. p. 140-158.
Chatterjee J, Kumar P, Sharma P N, Tewari R K. 2015. Chromium toxicity induces oxidative stress in turnip. Indian J. Plant Physiol., http://dx.doi.org/10.1007/s40502-015-0163-6.
Chester R, Hughes M J. 1967. A chemical technique for the separation of ferro-manganese minerals, carbonate minerals and adsorbed trace elements from pelagic sediments. Chem. Geol., 2: 249-262.
Darvish Bastami K, Bagheri H, Haghparast S, Soltani F, Hamzehpoor A, Darvish Bastami M. 2012. Geochemical and geo-statistical assessment of selected heavy metals in the surface sediments of the Gorgan Bay, Iran. Mar. Pollut. Bull., 64 (12): 2 877-2 884.
Devesa-Rey R, Díaz-Fierros F, Barral M T. 2010. Trace metals in river bed sediments: an assessment of their partitioning and bioavailability by using multivariate exploratory analysis. J. Environ. Manage., 91 (12): 2 471-2 477.
Du Laing G, van de Moortel A M K, Moors W, de Grauwe P, Meers E, Tack F M G, Verloo M G. 2009. Factors affecting metal concentrations in reed plants (Phragmites australis) of intertidal marshes in the Scheldt estuary. Ecol. Eng., 35 (2): 310-318.
Eid E M, El-Sheikh M A, Alatar A A. 2012. Uptake of Ag, Co and Ni by the organs of Typha domingensis (Pers.) Poir. ex Steud. in Lake Burullus and their potential use as contamination indicators. Open J. Mod. Hydr o l., 2: 21-27.
Eid E M, Shaltout K H. 2014. Monthly variations of trace elements accumulation and distribution in above-and below-ground biomass of Phragmites australis (Cav.) Trin. ex Steudel in Lake Burullus (Egypt): a biomonitoring application. Ecol. Eng., 73: 17-25.
Ganjali S, Tayebi L, Atabati H, Mortazavi S. 2014. Phragmites australis as a heavy metal bioindicator in the Anzali wetland of Iran. Toxicol. Environ. Chem., 96 (9): 1 428-1 434, http://dx.doi.org/10.1080/02772248.2014.942310.
Gao H F, Bai J H, Xiao R, Liu P P, Jiang W, Wang J J. 2013. Levels, sources and risk assessment of trace elements in wetland soils of a typical shallow freshwater lake, China. Stoch. Environ. Res. Risk Assess., 27 (1): 275-284, http://dx.doi.org/10.1007/s00477-012-0587-8.
Ghasemzadeh F, Yosefzadeh H, Arab-Zavar M H. 2008. Removing arsenic and antimony by Phragmites australis: rhizofiltration technology. J. Appl. Sci., 8 (9): 1 668-1 675.
Gibbs R J. 1973. Mechanisms of trace metal transport in rivers. Science, 180 (4081): 71-73.
Gill M. 2014. Heavy metal stress in plants: a review. Int. J. Adv. Res., 2 (6): 1 043-1 055.
Goulet R R, Pick F R. 2001. Diel changes in iron concentrations in surface-flow constructed wetlands. Water Sci. Technol., 44 (11-12): 421-426.
Grisey E, Laffray X, Contoz O, Cavalli E, Mudry J, Aleya L. 2012. The bioaccumulation performance of reeds and cattails in a constructed treatment wetland for removal of heavy metals in landfill leachate treatment (Etueffont, France). Water Air Soil Pollut., 223 (4): 1 723-1 741.
Gupta M, Khan E. 2015. Mechanism of arsenic toxicity and tolerance in plants: role of silicon and signalling molecules. In: Tripathi B N, Müller M eds. Stress Responses in Plants. Springer International Publishing, Switzerland. p.143-157, http://dx.doi.org/10.1007/978-3-319-13368-3_6.
Hosseini Alhashemi A S, Karbassi A R, Hassanzadeh Kiabi B, Monavari S M, Nabavi S M B, Sekhavatjou M S. 2011. Bioaccumulation of trace elements in trophic levels of wetland plants and waterfowl birds. Biol. Trace Elem. Res., 142 (3): 500-516.
Jamshidi-Zanjani A, Saeedi M. 2013. Metal pollution assessment and multivariate analysis in sediment of Anzali international wetland. Environ. Earth Sci., 70 (4): 1 791-1 808.
JICA. 2004. The study on integrated management for ecosystem conservation of the Anzali wetland. Nippon Koei Co, Ltd., Tokyo.
Kabata-Pendias A, Mukherjee A B. 2007. Trace Elements from Soil to Human. Springer, Berlin, Heidelberg.
Kabata-Pendias A, Pendias H. 2001. Trace Elements in Soils and Plants. CRC Press, Boca Raton, London.
Karbassi A R, Monavari S M, Nabi Bidhendi Gh R, Nouri J, Nematpour K. 2008. Metal pollution assessment of sediment and water in the Shur River. Environ. Monit. Assess., 147 (1-3): 107-116.
Kopyra M, Gwóźdź E A. 2003. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupin u s luteus. Plant Physiol and Biochem., 41 (11-12): 1 011-1 017.
Kükrer S, Şeker S, Abacı Z T, Kutlu B. 2014. Ecological risk assessment of heavy metals in surface sediments of northern littoral zone of Lake Çıldır, Ardahan, Turkey. Environ. Monit. Assess., 186 (6): 3 847-3 857.
Lü D W, Zheng B, Fang Y, Shen G, Liu H J. 2015. Distribution and pollution assessment of trace metals in seawater and sediment in Laizhou Bay. Chin. J. Oceanol. Limnol., 33 (4): 1 053-1 061, http://dx.doi.org/10.1007/s00343-015-4226-3.
Lu Q Q, Bai J H, Gao Z Q, Zhao Q Q, Wang J J. 2014. Spatial and seasonal distribution and risk assessments for metals in a Tamarix Chinensis wetland, China. Wetlands., http://dx.doi.org/10.1007/s13157-014-0598-y.
Malik N J, Chamon A S, Mondal M D, Elahi S F, Faiz S M A. 2011. Effects of different levels of zinc on growth and yield of red amaranth (Amaranth us sp.) and rice (Oryza sativa, Variety-BR49). J. Bangladesh. Assoc. Young Res., 1 (1): 79-91.
Michalak A. 2006. Phenolic compounds and their Antioxidant activity in plants Growing under heavy metal stress. Polish J. Environ. Stud., 15 (4): 523-530.
Miyasaka S C, Hue N V, Dunn M A. 2007. Aluminum. In: Barker AV, Pilbeam D J eds. Handbook of Plant Nutrition. CRC Press, Taylor and Francis Group, Boca Raton, FL. p.439-479.
Moore F, Nematollahi M J, Keshavarzi B. 2015. Heavy metals fractionation in surface sediments of Gowatr bay-Iran. Environ. Monit. Assess., 187: 4 117, http://dx.doi.org/10.1007/s10661-014-4117-7.
Morari F, Dal Ferro N, Cocco E. 2015. Municipal wastewater treatment with Phragmites australis L. and Typha latifolia L. for irrigation reuse. Boron and heavy metals. Water Air Soil Pollut., 226: 56.
Nasehi F, Hassani A H, Monavari M, Karbassi A R, Khorasani N. 2013. Evaluating the metallic pollution of riverine water and sediments: a case study of area river. Environ. Monit. Assess., 185 (1): 197-203.
Ontario Ministry of the Environment and Energy, Guideline for Use at Contaminated Sites in Ontario. 1998. Appendix 2, Table E, Sediment Quality Criteria Appendix. Revised September 1998, http://www.ene.gov.on.ca/envision/gp/3161e01_1.pdfH1997.
Pandey N, Sharma C P. 2009. Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci., 163 (4): 753-758.
Pbugmacher S, Geissler K, Steinberg C. 1999. Activity of phase I and phase II detoxication enzymes in different cormus parts of Phragmites australis. Ecotoxicol. Environ. Saf., 42 (1): 62 -66.
Piva F, Ciaprini F, Onorati F, Benedetti M, Fattorini D, Ausili A, Regoli F. 2011. Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere, 83 (4): 475-485.
Roos M S. 1994. Sources and forms of potentially toxic metals in soil-plant systems. In: Roos M S ed. Toxic Metals in Soil-Plant Systems. John Wiley, Chichester. p. 3-25.
Rzymski P, Niedzielski P, Klimaszyk P, Poniedziałek B. 2014. Bioaccumulation of selected metals in bivalves (Unionidae) and Phragmites australis inhabiting a municipal water reservoir. Environ. Monit. Assess., 186 (5): 3 199-3 212.
Sasmaz A, Obek E, Hasar H. 2008. The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol. Eng., 33 (3-4): 278-284.
Srivastava J, Kalra S J S, Naraian R. 2014. Environmental perspectives of Phragmites australis (Cav.) Trin. Ex. Steudel. Appl. Water Sci., 4 (3): 193-202.
Suárez-Serrano A, Alcaraz C, Ibáñez C, Trobajo R, Barata C. 2010. Procambarus cla r kii as a bioindicator of heavy metal pollution sources in the lower Ebro River and Delta. Ecotoxicol. Environ. Saf., 73 (3): 280-286.
Tessier A, Campell P G C, Bisson M. 1979. Sequential extraction procedure for the Speciation of particulate trace metals. Anal. Chem., 51 (7): 844-851.
U. S. EPA3050. 1996. Acid Digestion of Sediments, Sludges and Soils; Method 3050B. Environmental Protection Agency, USA.
Vesali Naseh M R, Karbassi A R, Ghazaban F, Baghvand A. 2012. Evaluation of heavy metal pollution in Anzali wetland, Guilan, Iran. Iran. J. Toxicol., 5 (15): 565-576.
Wang J J, Bai J H, Gao Z Q, Lu Q Q, Zhao Q Q. 2015. Soil as levels and bioaccumulation in Suaeda salsa and Phragmites australis wetlands of the Yellow River Estuary, China. BioMed Res. Int., 2015: 301898, http://dx.doi.org/10.1155/2015/301898.
Wang Z X, Yao L, Liu G H, Liu W Z. 2014. Heavy metals in water, sediments and submerged macrophytes in ponds around the Dianchi Lake, China. Ecotoxicol. Environ. Saf., 107: 200-206.
Xiao R, Bai J H, Huang L B, Zhang H G, Cui B S, Liu X H. 2013. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China. Ecotoxicology, 22 (10): 1 564-1 575.
Xiao R, Bai J H, Lu Q Q, Zhao Q Q, Gao Z Q, Wen X J, Liu X H. 2015. Fractionation, transfer, and ecological risks of heavy metals in riparian and ditch wetlands across a 100-year chronosequence of reclamation in an estuary of China. Sci. Total Environ., 517: 66-75.
Zamani Hargalani F, Karbassi A, Monavari S M, Abroomand Azar P. 2013. A novel pollution index based on the bioavailability of elements: a study on Anzali wetland bed sediments. Environ. Monit. Assess., 186 (4): 2 329-2 348, http://dx.doi.org/10.1007/s10661-013-3541-4.
Copyright © Haiyang Xuebao