Cite this paper:
JIANG Xingjie, WANG Daolong, GAO Dalu, ZHANG Tingting. Experiments on exactly computing non-linear energy transfer rate in MASNUM-WAM[J]. Journal of Oceanology and Limnology, 2016, 34(4): 821-834

Experiments on exactly computing non-linear energy transfer rate in MASNUM-WAM

JIANG Xingjie1,2, WANG Daolong2, GAO Dalu1,2, ZHANG Tingting2
1 Ocean University of China, Qingdao 266071, China;
2 First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
Abstract:
The Webb-Resio-Tracy (WRT) method for exact computation of the non-linear energy transfer rate was implemented in MASNUM-WAM, which is a third-generation wave model solving the discrete spectral balance equation. In this paper, we describe the transformation of the spectral space in the original WRT method. Four numerical procedures were developed in which the acceleration techniques in the original WRT method, such as geometric scaling, pre-calculating, and grid-searching, are all reorganized. A series of numerical experiments including two simulations based on real data were performed. The availability of such implementation in both serial and parallel versions of the wave model was proved, and a comparison of computation times showed that some of the developed procedures provided good efficacy. With exact computation of non-linear energy transfer, MASNUM-WAM now can be used to perform numerical experiments for research purposes, which augurs well for further developments of the model.
Key words:    nonlinear energy transfer|the WRT method|geometric scaling|MASNUM-WAM   
Received: 2015-01-08   Revised: 2015-03-27
Tools
PDF (3497 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by JIANG Xingjie
Articles by WANG Daolong
Articles by GAO Dalu
Articles by ZHANG Tingting
References:
Ardhuin F, Herbers T H C, O'Reilly W C. 2001. A hybrid Eulerian-Lagrangian model for spectral wave evolution with application to bottom friction on the continental shelf. J. Phys. Oceanogr., 31 (6): 1 498-1 516.
Barnett T P. 1968. On the generation, dissipation, and prediction of ocean wind waves. J. Geophys. Res., 73 (2): 513-530.
Booij N, Haagsma I J G, Holthuijsen L H, Kieftenburg A T M M, Ris R C, van der Westhuysen A J, Zijlema M. 2004. SWAN User Manual Cycle III Version 40.41. Delft University of Technology.
Booij N, Ris R C, Holthuijsen L H. 1999. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 104 (C4): 7 649-7 666.
Donelan M A, Hamilton J, Hui W H. 1985. Directional spectra of wind-generated waves. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 315 (1534): 509-562.
Ewing J A. 1971. A numerical wave prediction method for the North Atlantic Ocean. Dtsch. Hydrogr. Z., 24 (6): 241-261.
Hasselmann D E, Dunckel M, Ewing J A. 1980. Directional wave spectra observed during JONSWAP 1973. J. Phys. Oceanogr., 10 (8): 1 264-1 280.
Hasselmann K. 1962. On the non-linear energy transfer in a gravity-wave spectrum: part 1. General theory. J. Fluid Mech., 12 (4): 481-500.
Hasselmann K. 1963a. On the non-linear energy transfer in a gravity-wave spectrum: part 2. Conservation theorems; wave-particle analogy; irreversibility. J. Fluid Mech., 15 (2): 273-281.
Hasselmann K. 1963b. On the non-linear energy transfer in a gravity-wave spectrum: part 3. Evaluation of energy flux and swell-sea interaction for a Neumann spectrum. J. Fluid Mech., 15 (3): 385-398.
Hasselmann S, Hasselmann K, Allender J H, Barnett T P. 1985. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part II: parameterizations of the nonlinear energy transfer for application in wave models. J. Phys. Oceanogr., 15 (11): 1 378-1 391.
Hasselmann S, Hasselmann K. 1981. A symmetrical method of computing the non-linear transfer in a gravity-wave spectrum. Hamburger Geophys, Einzelschriften. 52p.
Hasselmann S, Hasselmann K. 1985a. Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: a new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr., 15 (11): 1 369-1 377.
Hasselmann S, Hasselmann K. 1985c. The wave model EXACT-NL. In: The SWAMP Group ed. Ocean Wave Modelling. Plenum Press, New York. p.249-251.
Hersbach H, Janssen P A E M. 1999. Improvement of the short-fetch behavior in the Wave Ocean Model (WAM). Journal of Atmospheric and Oceanic Technology, 16 (7): 884-892.
Herterich K, Hasselmann K. 1980. A similarity relation for the nonlinear energy transfer in a finite-depth gravity-wave spectrum. J. Fluid Mech., 97 (1): 215-224.
Hwang P A, Wang D W. 2004. Field measurements of durationlimited growth of wind-generated ocean surface waves at young stage of development. J. Phys. Oceanogr., 34 (10): 2 316-2 326.
Masuda A. 1980. Nonlinear energy transfer between wind waves. J. Phys. Oceanogr., 10 (12): 2 082-2 093.
Monbaliu J, Hargreaves J C, Carretero J-C, Gerritsen H, Flather R. 1999. Wave modelling in the PROMISE project. Coast. Eng., 37 (3-4): 379-407.
Resio D T, Perrie W. 1991. A numerical study of nonlinear energy fluxes due to wave-wave interactions. Part 1: methodology and basic results. J. Fluid Mech., 223: 609-629.
The Wamdi Group. 1988. The WAM model-a third generation ocean wave prediction model. J. Phys. Oceanogr., 18 (12): 1 775-1 810.
Tolman H L. 1991. A third-generation model for wind waves on slowly varying, unsteady, and inhomogeneous depths and currents. J. Phys. Oceanogr., 21 (16): 782-797.
Tolman H L. 2002. User Manual and System Documentation of WAVEWATCH III Version 2.22. Technical Report 222, NOAA/NWS/NCEP/MMAB. 133p.
Tolman H L. 2009. User Manual and System Documentation of WAVEWATCH IIITM Version 3.14. Technical Report 276, NOAA/NWS/NCEP/MMAB. 194p.
Tracy B A, Resio D T. 1982. Theory and Calculation of the Nonlinear Energy Transfer Between Sea Waves in Deep Water. WIS Technical Report 11. US Army Engineer Waterways Experiment Station, Vicksburg, Mississippi. USA. 47p.
van Vledder G Ph, Herbers T H C, Jensen R E, Resio D T, Tracy B A. 2000. Modelling of non-linear quadruplet wave-wave interactions in operational wave models. In: Proceedings of the 27th International Conference on Coastal Engineering. Sydney. p.797-811.
van Vledder G Ph. 2006. The WRT method for the computation of non-linear four-wave interactions in discrete spectral wave models. Coast. Eng., 53 (2-3): 223-242.
Wang G S, Qiao F L, Yang Y Z. 2007. Study on parallel algorithm for MPI-based LAGFD-WAM numerical wave model. Advances in Marine Science, 25 (4): 401-407. (in Chinese with English abstract)
Webb D J. 1978. Non-linear transfers between sea waves. Deep-Sea Res., 25 (3): 279-298.
Yang Y Z, Qiao F L, Zhao W, Teng Y, Yuan Y L. 2005. MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanologica Sinica, 27 (2): 1-7. (in Chinese with English abstract)
Yuan Y L, Hua F, Pan Z D, Sun L T. 1992b. The LAGFDWAM wave model—II. Reginal Characteristic inlaid scheme and its application. Acta Oceanologica Sinica, 14 (6): 12-24. (in Chinese)
Yuan Y L, Pan Z D, Hua F, Sun L T. 1992a. The LAGFDWAM wave model—I. Basic physical model. Acta Oceanologica Sinica, 14 (5): 1-7. (in Chinese)
Yuan Y L, Tung C C, Huang N E. 1986. Statistical characteristics of breaking waves. In: Phillips O M, Hasselmann K eds. Wave Dynamics and Radio Probing of the Ocean Surface. Springer, New York. p.265-272.
Copyright © Haiyang Xuebao