Cite this paper:
LIU Lingling, HUANG Ruixin, WANG Fan. Subduction/obduction rate in the North Pacific diagnosed by an eddy-resolving model[J]. Journal of Oceanology and Limnology, 2016, 34(4): 835-846

Subduction/obduction rate in the North Pacific diagnosed by an eddy-resolving model

LIU Lingling1, HUANG Ruixin2, WANG Fan1
1 Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
Abstract:
Ventilation in the North Pacific is examined using data from the eddy-resolving 1/12° global HYbrid Coordinate Ocean Model (HYCOM) and QuikSCAT wind stress data. For the period January 2004 to December 2006 and area 20°-40°N, the total annual subduction rate is estimated at 79 Sv, and the obduction rate 41 Sv. Resolving the small-scale and high-frequency components of the eddy field can increase the subduction rate by 42 Sv, and obduction by 31 Sv. Lateral induction is the dominant contributor to enhancement of subduction/obduction, and temporal change of mixed layer depth has a secondary role. Further analysis indicates that the high-frequency components of the eddy field, especially those with timescale shorter than 10 days, are the most critical factor enhancing subduction/obduction.
Key words:    subduction|obduction|eddy-resolved|high frequency|North Pacific   
Received: 2015-01-29   Revised: 2015-04-15
Tools
PDF (992 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIU Lingling
Articles by HUANG Ruixin
Articles by WANG Fan
References:
Cummings J A. 2005. Operational multivariate ocean data assimilation. Quart. J. Roy. Met eor. Soc., 131 (613): 3 583-3 604.
Cushman-Roisin B. 1987. Subduction. Dynamics of the oceanic surface mixed layer. In: Proceedings ‘Aha Hulico'a', Hawaiian Winter Workshop. Hawaii Inst. of Geophysics Special Publications, Hawaii. p.181-196.
De Szoeke R A. 1980. On the effects of horizontal variability of wind stress on the dynamics of the ocean mixed layer. J. Phys. Oceanogr., 10 (9): 1 439-1 454.
Ferrari R, Wunsch C. 2009. Ocean circulation kinetic energy: reservoirs, sources, and sinks. Annu. Rev. Fluid. Mech., 41: 253-282.
Follows M J, Marshall J C. 1994. Eddy driven exchange at ocean fronts. Ocean Modell., 102: 5-9.
Hazeleger W, Drijfhout S S. 2000. Eddy subduction in a model of the subtropical gyre. J. Phys. Oceanogr., 30 (4): 677-695.
Huang R X, Qiu B. 1998. The structure of the wind-driven circulation in the subtropical South Pacific Ocean. J. Phys. Oceanogr., 28 (6): 1 173-1 186.
Karstensen J, Quadfasel D. 2002a. Water subducted into the Indian Ocean subtropical gyre. Deep-Sea Res earch Part II: Topical Studies in Oceanography, 49 (7-8): 1 441-1 457.
Karstensen J, Quadfasel D. 2002b. Formation of Southern Hemisphere thermocline waters: water mass conversion and subduction. J. Phys. Oceanogr., 32 (11): 3 020-3 038.
Kouketsu S, Tomits H, Oka E, Hosoda S, Kobayashi T, Sato K. 2011. The role of meso-scale eddies in mixed layer deepening and mode water formation in the western North Pacific. J. Oceanogr., 68 (1): 63-77.
Liu L L, Huang R X. 2012. The global subduction/obduction rates: their interannual and decadal variability. J. Clim ate, 25 (4): 1 096-1 115.
Liu L L, Wang F, Huang R X. 2011. Enhancement of subduction/obduction due to hurricane-induced mixed layer deepening. Deep-Sea Res earch I: Oceanographic Research Papers, 58 (6): 658-667.
Marshall D. 1997. Subduction of water masses in an eddying ocean. J. Mar Res., 55 (2): 201-222.
Marshall J C, Williams R G, Nurser A J G. 1993. Inferring the subduction rate and period over the North Atlantic. J. Phys. Oceanogr., 23 (7): 1 315-1 329.
Masuzawa J. 1969. Subtropical mode water. Deep Sea Res earch and Oceanographic Abstracts, 16 (5): 463-472.
Metzger E J, Hurlburt H E, Xu X, Shriver J F, Gordon A L, Sprintall J, Susanto R D, van Aken H M. 2010. Simulated and observed circulation in the Indonesian Seas: 1/12° global HYCOM and the INSTANT observations. Dyn. Atmos. Oceans, 50 (2): 275-300, http://dx.doi.org/10.1016/j.dynatmoce.2010.04.002.
Nishikawa S, Tsujino H, Sakamoto K, Nakano H. 2010. Effects of mesoscale eddies on subduction and distribution of Subtropical Mode Water in an eddy-resolving OGCM of the western North Pacific. J. Phys. Oceanogr., 40 (8): 1 748-1 765.
Oka E. 2009. Seasonal and interannual variation of North Pacific Subtropical Mode Water in 2003-2006. J. Oceanogr., 65 (2): 151-164.
Pollard R T, Regier L A. 1992. Vorticity and vertical circulation at an ocean front. J. Phys. Oceanogr., 22 (6): 609-625.
Qiu B, Chen S M, Hacker P. 2007. Effect of mesoscale eddies on subtropical mode water variability from the Kuroshio Extension System Study (KESS). J. Phys. Oceanogr., 37 (4): 982-1 000.
Qiu B, Hacker P, Chen S M, Donohue K A, Watts D R, Mitsudera H, Hogg N G, Jayne S R. 2006. Observations of the subtropical mode water evolution from the Kuroshio Extension System Study. J. Phys. Oceanogr., 37 (3): 457-473.
Qiu B, Huang R X. 1995. Ventilation of the North Atlantic and North Pacific: subduction versus obduction. J. Phys. Oceanogr., 25 (10): 2 374-2 390.
Qu T D, Chen J. 2009. A North Pacific decadal variability in subduction rate. Geophys. Res. Lett., 36 (22): L22602, http://dx.doi.org/10.1029/2009GL040914.
Qu T D, Xie S P, Mitsudera H, Ishida A. 2002. Subduction of the North Pacific mode waters in a global high-resolution GCM. J. Phys. Oceanogr., 32 (3): 746-763.
Rainville L, Jayne S R, McClear J L, Multrud M E. 2007. Formation of subtropical mode water in a high-resolution ocean simulation of the Kuroshio Extension region. Ocean Modell., 17 (4): 338-356.
Suga T, Hanawa K, Toba Y. 1989. Subtropical mode water in the 137°E section. J. Phys. Oceanogr., 19 (10): 1 605-1 618.
Tandon A, Zahariev K. 2001. Quantifying the role of mixed layer entrainment for water mass transformation in the North Atlantic. J. Phys. Oceanogr., 31: 1 120-1 131.
Trossman D S, Thompson L A, Kelly K A, Kwon Y O. 2009. Estimates of North Atlantic Ventilation and mode water formation for winters 2002-06. J. Phys. Oceanogr., 39 (10): 2 600-2 617.
Tsujino H, Fujii Y. 2007. Improved representation of currents and water masses in the upper layer of the North Pacific Ocean in eddy-resolving OGCMS. CLIVAR Exchanges, No. 43, International CLIVAR Project Office, Southampton, United Kingdom. p.19-21.
Uehara H, Suga T, Hanawa K, Shikama N. 2003. A role of eddies in formation and transport of North Pacific Subtropical Mode Water. Geophys. Res. Lett., 30 (13): 1705, http://dx.doi.org/10.1029/2003GL017542.
Xu L X, Xie S P, Mcclearn J L, Liu Q Y, Sasaki H. 2014. Mesoscale eddy effects on the subduction of North Pacific mode waters. J. Geophys. Res. Oceans, 119 (8): 4 867-4 886, http://dx.doi.org/10.1002/2014JC009861.
Copyright © Haiyang Xuebao