Cite this paper:
HE Dong, LIU Jiao, HAO Qiang, RAN Lihua, ZHOU Bin, TANG Xuexi. Interspecifi c competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture[J]. Journal of Oceanology and Limnology, 2016, 34(2): 301-313

Interspecifi c competition and allelopathic interaction between Karenia mikimotoi and Dunaliella salina in laboratory culture

HE Dong1,2, LIU Jiao1, HAO Qiang2, RAN Lihua2, ZHOU Bin1, TANG Xuexi1
1 Ocean University of China, Qingdao 266071, China;
2 State Key Laboratory of Satellite Ocean Environmen Dynamics, Second Institute of Oceanography, State Oceanic Administration(SOA), Hangzhou 310012, China
Algal allelopathy is a manifold ecological/physiological phenomenon that is focused on chemical interactions and autotoxicity. We investigated the allelopathic interactions between Karenia mikimotoi and Dunaliella salina in laboratory cultures based on different temperature(15℃, 20℃, and 25℃) and lighting(40, 80, and 160μmol/(m2·s)) conditions. The growth of D. salina in bi-algae culture(1:1 size/density) was significantly restrained. The results of cell-free filtrate culture indicate that direct cell-tocell contact was not necessary in interspecifi c competition. Further experimental results demonstrated that allelochemicals released from K. mikimotoi were markedly influenced by both temperature(P=0.013) and irradiance(P=0.003), resulting in different growth characteristics of D. salina in filtrate mediums. Compared with the plateau period, K. mikimotoi exudates in the exponential phase had a stronger short-term inhibition effect on D. salina in normal conditions. A clear concentration-dependent relationship was observed in the effect of allelochemicals released from K. mikimotoi with low-promoting and high-repressing effects on D. Salina in a short time-scale. In addition, allelopathic substances remain stable and effective under high temperature and pressure stress. Many fl occulent sediments adhering with D. salina cells were observed in all filtrate mediums, while the quantity and color depended on the original culture conditions.
Key words:    allelopathy|Karenia mikimotoi|Dunaliella salina|bi-algal culture|cell-free filtrate   
Received: 2014-11-17   Revised: 2015-03-27
PDF (669 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by HE Dong
Articles by LIU Jiao
Articles by HAO Qiang
Articles by RAN Lihua
Articles by ZHOU Bin
Articles by TANG Xuexi
Antunes J T, Leão P N, Vasconcelos V M. 2012. Influence of biotic and abiotic factors on the allelopathic activity of the cyanobacterium Cylindrospermopsis raciborskii strain LEGE 99043. Microbial Ecology, 64(3):584-592,
Arzul G, Seguel M, Guzman L, Erard-Le Denn E. 1999.Comparison of allelopathic properties in three toxic Alexandrium species. Journal of Experimental Marine Biology and Ecology, 232(2):285-295,
Brand L E, Campbell L, Bresnan E. 2012. Karenia:the biology and ecology of a toxic genus. Harmful Algae, 14:156-178,
Corcoran A A, Richardson B, Flewelling L J. 2014. Effects of nutrient-limiting supply ratios on toxin content of Karenia brevis grown in continuous culture. Harmful Algae, 39:334-341,
Dakshini K M M. 1994. Algal allelopathy. The Botanical Review, 60(2):182-196,
Dang L X, Li Y, Liu F et al. 2015. Chemical response of the toxic dinofl agellate Karenia mikimotoi against grazing by three species of Zooplankton. Journal of Eukaryotic Microbiology, 62(4):470-480.
Davidson K, Miller P, Wilding T A, Shutler J, Bresnan E, Kennington K Swan S. 2009. A large and prolonged bloom of Karenia mikimotoi in Scottish waters in 2006.Harmful Algae, 8(2):349-361,
Fistarol G O, Legrand C, Granéli E. 2003. Allelopathic effect of Prymnesium parvum on a natural plankton community.Marine Ecology:Progress Series, 255:115-125,
Fistarol G O, Legrand C, Selander E, Hummert C, Stolte W,Granéli E. 2004. Allelopathy in Alexandrium spp.:effect on a natural plankton community and on algal monocultures. Aquatic Microbial Ecology, 35(1):45-56,
Gentien P, Lunven M, Lazure P, Youenou A, Crassous M P. 2007. Motility and autotoxicity in Karenia mikimotoi(Dinophyceae). Philosophical Transactions of the Royal Society Lond B:Biological Sciences, 362(1487):1 937-1 946,,10.1098/rstb.2007.2079.
Granéli E, Flynn K. 2006. Chemical and physical factors infl uencing toxin content. In:Granéli E, Turner J eds.Ecology of Harmful Algae. Springer, Berlin Heidelberg.p.229-241.
Granéli E, Johansson N. 2003. Increase in the production of allelopathic substances by Prymnesium parvum cells grown under N-or P-deficient conditions. Harmful Algae, 2(2):135-145,
Granéli E, Weberg M, Salomon P S. 2008. Harmful algal blooms of allelopathic microalgal species:the role of eutrophication. Harmful Algae, 8(1):94-102,
Guillard R R. 1975. Culture of phytoplankton for feeding marine invertebrates. I n:Smith W L, Chanley M H eds.Culture of Marine Invertebrate Animals. Springer, US.p.29-60.
Ji X Q, Han X T, Zheng L et al. 2011. Allelopathic interactions between Prorocentrum micans and Skeletonema costatum or Karenia mikimotoi in laboratory cultures. Chinese Journal of Oceanology and Limnology, 29(4):840-848,
Kubanek J, Hicks M K, Naar J, Villareal T A. 2005. Does the red tide dinofl agellate Karenia brevis use allelopathy to outcompete other phytoplankton? Limnology and Oceanography, 50(3):883-895,
Lee S J, Jang M H, Kim H S, Yoon B D, Oh H M. 2000.Variation of microcystin content of Microcystis aeruginosa relative to medium N:P ratio and growth stage. Journal of Applied Microbiology, 89(2):323-329,
Legrand C, Rengefors K, Fistarol G O, Granéli E. 2003.Allelopathy in phytoplankton-biochemical, ecological and evolutionary aspects. Phycologi a, 42(4):406-419,
Li H. 2011. The effect of allelopathy on the species competition between Skeletonema costatum and Prorocentrum donghaiiense. Ocean University of China, Qingdao, China.(in Chinese)
Li J, Glibert P M, Zhou M et al. 2009. Relationships between nitrogen and phosphorus forms and ratios and the development of dinofl agellate blooms in the East China Sea. Marine Ecology Progress Series, 383:11-26,
Marshall J A, Ross T, Pyecroft S, Hallegraeff G. 2005.Superoxide production by marine microalgae. Marine Biology, 147(2):541-549,
Monti M, Cecchin E. 2012. Comparative growth of three strains of Ostreopsis ovata at different light intensities with focus on inter-specific allelopathic interactions.Cryptogamie Algologie, 33(2):113-119,
Mulderij G, Mooij W M, Smolders A J P, van Donk E. 2005.Allelopathic inhibition of phytoplankton by exudates from Stratiotes aloides. Aquatic Botany, 82(4):284-296,
Nan C R, Zhang H Z, Lin S Z, Zhao G Q, Liu X Y. 2008.Allelopathic effects of Ulva lactuca on selected species of harmful bloom-forming microalgae in laboratory cultures.Aquatic Botany, 89(1):9-15,
Reigosa M J, Sánchez-Moreiras A, González L. 1999.Ecophysiological approach in allelopathy. Critical Reviews in Plant Sciences, 18(5):577-608,
Rice E L. 1984. Allelopathy. 2nd edn. Academic Press, New York. 422p.
Satake M, Shoji M, Oshima Y, Naoki H, Fujita T, Yasumoto T. 2002. Gymnocin-A, a cytotoxic polyether from the notorious red tide dinofl agellate, Gymnodinium mikimotoi.Tetrahedron letters, 43(33):5 829-5 832,
Satake M, Tanaka Y, Ishikura Y, Oshima Y, Naoki H, Yasumoto T. 2005. Gymnocin-B with the largest contiguous polyether rings from the red tide dinofl agellate, Karenia(formerly Gymnodinium) mikimotoi. Tetrahedron Letters, 46(20):3 537-3 540, 2005.03.115.
Silke J, O'Beirn F, Cronin M. 2005. Karenia mikimotoi:an exceptional dinofl agellate bloom in western Irish waters, summer 2005. Marine Environment and Health Series, No. 21,
Sivonen K. 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Applied and Environmental Microbiology, 56(9):2 658-2 666.
Suikkanen S, Fistarol G O, Grané li E. 2004. Allelopathic effects of the Baltic cyanobacteria Nodularia spumdigena, Aphanizomenon flos-aquae and Anabaena lemmermannii on algal monocultures. Journal of Experimental Marine Biology and Ecology, 308(1):85-101,
Sukenik A, Eshkol R, Livne A, Hadas O, Rom M, Tchernov D, Vardi A, Kaplan A. 2002. Inhibition of growth and photosynthesis of the dinofl agellate Peridinium gatunense by Microcystis sp.(cyanobacteria):a novel allelopathic mechanism. Limnology and Oceanography, 47(6):1 656-1 663.
Tapaswi P K, Mukhopadhyay A. 1999. Effects of environmental fluctuation on plankton allelopathy. Journal of Mathematical Biology, 39(1):39-58,
Tatum N, Canobell L. 2006. A modifi ed assay to determine hemolytic toxin variability among Karenia clones isolated from the Gulf of Mexico. Harmful Algae, 5(5):592-598,
Thorel M, Fauchot J, Morelle J, Raimbault V, Le Roy B, Miossec C, Kientz-Bouchart V, Claquin P. 2014.Interactive effects of irradiance and temperature on growth and domoic acid production of the toxic diatom Pseudo-nitzschia australis(Bacillariophyceae). Harmful Algae, 39:232-241,
Tillmann U, John U, Cembella A. 2007. On the allelochemical potency of the marine dinofl agellate Alexandrium ostenfeldii against heterotrophic and autotrophic protists.Journal of Plankton Research, 29(6):527-543,
Tong M M, Kulis D M, Fux E, Smith J L, Hess P, Zhou Q X, Anderson D M. 2011. The effects of growth phase and light intensity on toxin production by Dinophysis acuminata from the northeastern United States. Harmful Algae, 10(3):254-264, 2010.10.005.
Uchida T, Toda S, Matsuyama Y, et al. 1999. Interactions between the red tide dinofl agellates Heterocapsa circularisquama and Gymnodinium mikimotoi in laboratory culture. Journal of Experimental Marine Biology and Ecology, 241(2):285-299,
Usup G, Kulis D M, Anderson D M. 1994. Growth and toxin production of the toxic dinofl agellate Pyrodinium bahamense var. compressum in laboratory cultures.Natural Toxins, 2(5):254-262,
Wang J H, Wu J Y. 2009. Occurrence and potential risks of harmful algal blooms in the East China Sea. Science of the Total Environment, 407(13):4 012-4 021,
Wang Y, Tang X X. 2008. Interactions between Prorocentrum donghaiense Lu and Scrippsiella trochoidea(Stein) Loeblich Ⅲ under laboratory culture. Harmful Algae, 7(1):65-75,
Wang Y, Yu Z M, Song X X et al. 2006. Interactions between the bloom-forming dinofl agellates Prorocentrum donghaiense and Alexandrium tamarense in laboratory cultures. Journal of Sea Research, 56(1):17-26,
Yamasaki Y, Shikata T, Nukata A, Ichiki S, Nagasoe S, Matsubara T, Shimasaki Y, Nakao M, Yamaguchi K, Oshima Y, Oda T, Jenkinson I R, Asakawa M, Honjo T. 2009. Extracellular polysaccharide-protein complexes of a harmful algal mediate the allelopathic control it exerts within the phytoplankton community. The ISME Journal, 3(7):808-817,
Yang C Y, Zhao N N, Xia C H, Liu S J, Zhou S W. 2001.Effects of Chattonella marina cell-free filtrate on bloom microalgae and co-culture of it and microalgae. Marine Environmental Science, 30(6):798-803.(in Chinese with English abstract)
Yang Z B, Takayama H, Matsuoka K, Hodgkiss I J. 2000.Karenia digitata sp. nov.(Gymnodiniales, Dinophyceae), a new harmful algal bloom species from the coastal waters of west Japan and Hong Kong. Phycologia, 39(6):463-470,
Yasumoto T, Underdal B, Aune T, Hormazabal V, Skulberg O M, Oshima Y. 1990. Screening for hemolytic and ichthyotoxic components of Chrysochromulina polylepis and Gyrodinium aureolum from Norwegian coastal waters. I n:Granéli E, Sundström B, Edler L et al eds.Toxic Marine Phytoplankton; Fourth International Conference. Elsevier Science Publishing Co., Inc, New York, USA; Amsterdam, Netherlands. p.436-440.
Copyright © Haiyang Xuebao