Cite this paper:
WU Hualian, LI Tao, WANG Guanghua, DAI Shikun, HE Hui, XIANG Wenzhou. A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins[J]. Journal of Oceanology and Limnology, 2016, 34(2): 391-398

A comparative analysis of fatty acid composition and fucoxanthin content in six Phaeodactylum tricornutum strains from diff erent origins

WU Hualian, LI Tao, WANG Guanghua, DAI Shikun, HE Hui, XIANG Wenzhou
Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
Phaeodactylum tricornutum is a potential livestock for the combined production of eicosapentaenoic acid(EPA) and fucoxanthin. In this study, six marine diatom strains identified as P. tricornutum were cultured and their total lipid, fatty acid composition and major photosynthetic pigments determined. It was found that the cell dry weight concentration and mean growth rate ranged between 0.24-0.36 g/L and 0.31-0.33/d, respectively. Among the strains, SCSIO771 presented the highest total lipid content, followed by SCSIO828, and the prominent fatty acids in all strains were C16:0, C16:1, C18:1, and C20:5(EPA). Polyunsaturated fatty acids, including C16:2, C18:2, and EPA, comprised a signifi cant proportion of the total fatty acids. EPA was markedly high in all strains, with the highest in SCSIO828 at 25.65% of total fatty acids. Fucoxanthin was the most abundant pigment in all strains, with the highest in SCSIO828 as well, at 5.50 mg/g. The collective results suggested that strain SCSIO828 could be considered a good candidate for the concurrent production of EPA and fucoxanthin.
Key words:    Phaeodactylum tricornutum|fatty acid composition|polyunsaturated fatty acids|eicosapentaenoic acid|fucoxanthin   
Received: 2014-11-18   Revised: 2015-01-04
PDF (576 KB) Free
Print this page
Add to favorites
Email this article to others
Articles by WU Hualian
Articles by LI Tao
Articles by WANG Guanghua
Articles by DAI Shikun
Articles by HE Hui
Articles by XIANG Wenzhou
Avendaño-Herrera R E, Riquelme C E. 2007. Production of a diatom-bacteria biofilm in a photobioreactor for aquaculture applications. Aquacult. Eng., 36(2):97-104.
Barros M U G, Da Cruz Coelho A A, Da Sliva J W A, Bezerra J H C, Moreira R T, Farias W R L, Moreira R L. 2014.Lipid content of marine microalgae Chaetoceros muelleri Lemmermann(Bacillariophyceae) grown at different salinities. Biotemas, 27(2):1-8.
Bojko M, Brzostowska K, Kuczyńska P, Latowski D, Olchawa-Pajor M, Krzeszowiec W, Waloszek A, Strzałka K. 2013.Temperature effect on growth, and selected parameters of Phaeodactylum tricornutum in batch cultures. Acta Biochim. Pol., 60(4):861-864.
Boulom S, Robertson J, Hamid N, Ma Q, Lu J. 2014. Seasonal changes in lipid, fatty acid, α-tocopherol and phytosterol contents of seaweed, Undaria pinnatifi da, in the Marlborough Sounds, New Zealand. Food Chem., 161:261-269.
Cao X H, Li S Y, Wang C L, Lu M F. 2008. Effects of nutritional factors on the growth and heterotrophic eicosapentaenoic acid production of diatom Nitzschia laevis. J. Ocean Univ. Chin., 7(3):333-338.
Cerón García M C, Camacho F G, Mirón A S, Sevilla J M F, Chisti Y, Grima E M. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. J. Microbiol. Biotechnol., 16(5):689-694.
Domergue F, Lerchl J, Zähringer U, Heinz E. 2002. Cloning and functional characterization of Phaeodactylum tricornutum front-end desaturases involved in eicosapentaenoic acid biosynthesis. Eur. J. Biochem., 269(16):4 105-4 113.
Doyle J J, Doyle J L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull., 19(1):11-15.
Fung A, Hamid N, Lu J. 2013. Fucoxanthin content and antioxidant properties of Undaria pinnatifi da. Food Chem., 136(2):1 055-1 062.
Hosokawa M, Miyashita T, Nishikawa S, Emi S, Tsukui T, Beppu F, Okada T, Miyashita K. 2010. Fucoxanthin regulates adipocytokine mRNA expression in white adipose tissue of diabetic/obese KK-A y mice. Arch.Biochem. Biophys., 504(1):17-25.
Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances. Plant J., 54(4):621-639.
Kim S M, Jung Y J, Kwon O-N, Cha K H, Um B-H, Chung D, Pan C-H. 2012a. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum. Appl. Biochem. Biotechnol., 166(7):1 843-1 855.
Kim S M, Kang S-W, Kwon O-N, Chung D, Pan C-H. 2012b.Fucoxanthin as a major carotenoid in Isochrysis aff.galbana:characterization of extraction for commercial application. J. Korean Soc. Appl. Biol. Chem., 55(4):477-483.
Lepage G, Roy C C. 1984. Improved recovery of fatty acid through direct transesterifi cation without prior extraction or purification. J. Lipid Res., 25(12):1 391-1 396.
Liang Y, Mai K S, Sun S C. 2000. Total lipid and fatty acid composition of seven Chaetoceros strains. Transaction of Oceanology and Limnology,(3):29-33.
Marshall R, McKinley S, Pearce C M. 2010. Effects of nutrition on larval growth and survival in bivalves. Rev.Aquacult., 2(1):33-55.
Milledge J J, Smith B, Dyer P W, Harvey P. 2014. Macroalgaederived biofuel:a review of methods of energy extraction from seaweed biomass. Energies, 7(11):7 194-7 222.
Molina N, Morandi A C, Bolin A P, Otton R. 2014. Comparative effect of fucoxanthin and vitamin C on oxidative and functional parameters of human lymphocytes. Int.Immunopharmacol., 22(1):41-50.
Morais K C C, Ribeiro R L L, Santos K R, Taher D M, Mariano A B, Vargas J V C. 2009. Phaeodactylum tricornutum microalgae growth rate in heterotrophic and mixotrophic conditions. Thermal Engineering, 8(1):84-89.
Okauchi M, Tokuda M. 2003. Trophic value of the unicellular diatom Phaeodactylum tricornutum for larvae of Kuruma prawn, Penaeus japonic u s. In:Symposium on Aquaculture and Pathobiology of Crustaceans and Other Species in Conjunctions with the 32nd UJNR Aquaculture Panel Meeting. 18p.
Patil V, Källqvist T, Olsen E, Vogt G, Gislerød H R. 2007.Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult. Int., 15(1):1-9.
Peng J, Yuan J P, Wu C F, Wang J H. 2011. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms:metabolism and bioactivities relevant to human health. Mar. Drugs, 9(10):1 806-1 828.
Rabosky D L, Sorhannus U. 2009. Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 457(7226):183-186.
Rial D, Murado M A, Menduiña A, Fuciños P, González P, Mirón J, Vázquez J A. 2013. Effects of spill-treating agents on growth kinetics of marine microalgae. J.Hazard. Mater., 263:374-381.
Samarakoon K, Jeon Y-J. 2012. Bio-functionalities of proteins derived from marine algae-a review. Food Res. Int., 48(2):948-960.
Shing W L, Heng L Y, Surif S. 2013. Performance of a cyanobacteria whole cell-based fl uorescence biosensor for heavy metal and pesticide detection. Sensors, 13(5):6 394-6 404.
Vidussi F, Claustre H, Bustillos-Guzmàn J, Cailliau C, Marty J-C. 1996. Determination of chlorophylls and carotenoids of marine phytoplankton:separation of chlorophyll a from divinylchlorophyll α and zeaxanthin from lutein. J.Plankton Res., 18(12):2 377-2 382.
Wang S K, Li Y, White W L, Lu J. 2014. Extracts from New Zealand Undaria pinnatifi da containing fucoxanthin as potential functional biomaterials against cancer in vitro. J.Funct. Biomater., 5(2):29-42.
Wang W J, Wang G C, Zhang M, Tseng C K. 2005. Isolation of fucoxanthin from the Rhizoid of Laminaria japonica Aresch. J. Integr Plant Biol., 47(8):1 009-1 015.
White T J, Bruns T D, Lee S B, Taylor J W. 1990. Amplifi cation and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In:Innis M A, Gelfand D H, Sninsky J J, White T J eds. PCR Protocols a Guide to Methods and Applications. Academic Press, London. p.315-322.
Xia S, Wang K, Wan L L, Li A F, Hu Q, Zhang C W. 2013.Production, characterization, and antioxidant activity of fucoxanthin from the marine diatom Odontella aurita.Mar. Drugs, 11(7):2 667-2 681.
Yamamoto K, Ishikawa C, Katano H, Yasumoto T, Mori N. 2011. Fucoxanthin and its deacetylated product, fucoxanthinol, induce apoptosis of primary eff usion lymphomas. Cancer Lett., 300(2):225-234.
Yang F F, Long L J, Sun X M, Wu H L, Li T, Xiang W Z. 2014a. Optimization of medium using response surface methodology for lipid production by Scenedesmus sp.Mar. Drugs, 12(3):1 245-1 257.
Yang F F, Xiang W Z, Sun X M, Wu H L, Li T, Long L J. 2014b. A novel lipid extraction method from wet microalga Picochlorum sp. at room temperature. Mar.Drugs, 12(3):1 258-1 270.
Yang L Q, Li P C, Fan S J. 2008. The extraction of pigments from fresh Laminaria japonica. Chin. J. Oceanol. Limnol., 26(2):193-196.
Yang Z K, Niu Y F, Ma Y H, Xue J, Zhang M H, Yang W D, Liu J S, Lu S H, Guan Y F, Li H Y. 2013. Molecular and cellular mechanisms of neutral lipid accumulation in diatom following nitrogen deprivation. Biotechnol.Biofuels, 6:67.
Ye G L, Lu Q, Zhao W D, Du D L, Jin L J, Liu Y S. 2014.Fucoxanthin induces apoptosis in human cervical cancer cell line HeLa via PI3K/Akt pathway. Tumour Bio l., 35(11):11 261-11 267,
Yongmanitchai W, Ward O P. 1991. Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. Environ.Microbiol., 57(2):419-425.
Yool A, Tyrrell T. 2003. Role of diatoms in regulating the ocean's silicon cycle. Global Biogeochem. Cy cles, 17(4):14-1-14-21.
Zailanie K, Purnomo H. 2011. Fucoxanthin content of fi ve species brown seaweed from Talango District, Madura Island. J. Agr. Sci. Tech. A 1, 1 103-1 105.
Zhao P P, Gu W H, Wu S C, Huang A Y, He L W, Xie X J, Gao S, Zhang B Y, Niu J F, Lin A P, Wang G C. 2014. Silicon enhances the growth of Phaeodactylum tricornutum Bohlin under green light and low temperature. Sci. Rep., 4:3 958,
Copyright © Haiyang Xuebao