Cite this paper:
XIAO Yongshuang, MA Daoyuan, XU Shihong, LIU Qinghua, WANG Yanfeng, XIAO Zhizhong, LI Jun. Significant population genetic structure detected in the rock bream Oplegnathus fasciatus (Temminck & Schlegel, 1844) inferred from fluorescent-AFLP analysis[J]. Journal of Oceanology and Limnology, 2016, 34(3): 441-450

Significant population genetic structure detected in the rock bream Oplegnathus fasciatus (Temminck & Schlegel, 1844) inferred from fluorescent-AFLP analysis

XIAO Yongshuang1,2, MA Daoyuan1, XU Shihong1, LIU Qinghua1, WANG Yanfeng1, XIAO Zhizhong1, LI Jun1
1 Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Nantong Branch, Institute of Oceanology, Chinese Academy of Sciences, Nantong 226004, China
Abstract:
Oplegnathus fasciatus (rock bream) is a commercial rocky reef fish species in East Asia that has been considered for aquaculture. We estimated the population genetic diversity and population structure of the species along the coastal waters of China using fluorescent-amplifi ed fragment length polymorphisms technology. Using 53 individuals from three populations and four pairs of selective primers, we amplified 1264 bands, 98.73% of which were polymorphic. The Zhoushan population showed the highest Nei's genetic diversity and Shannon genetic diversity. The results of analysis of molecular variance (AMOVA) showed that 59.55% of genetic variation existed among populations and 40.45% occurred within populations, which indicated that a signifi cant population genetic structure existed in the species. The pairwise fixation index Fst ranged from 0.20 to 0.63 and were signifi cant after sequential Bonferroni correction. The topology of an unweighted pair group method with arithmetic mean tree showed two signifi cant genealogical branches corresponding to the sampling locations of North and South China. The AMOVA and STRUCTURE analyses suggested that the O. fasciatus populations examined should comprise two stocks.
Key words:    Oplegnathus fasciatus|fluorescent-AFLP|genetic diversity|genetic structure   
Received: 2014-12-31   Revised: 2015-03-03
Tools
PDF (471 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by XIAO Yongshuang
Articles by MA Daoyuan
Articles by XU Shihong
Articles by LIU Qinghua
Articles by WANG Yanfeng
Articles by XIAO Zhizhong
Articles by LI Jun
References:
An H S, Kim M J, Hong S W. 2008. Genetic diversity of rock bream Oplegnathus fasciatus in southern Korea. Gene. Genomics, 30(5):451-459.
Avise J C. 1998. The history and purview of phylogeography:a personal reflection. Mol. Ecol., 7(4):371-379.
Beardsley R C, Limeburner R, Yu H, Cannon G A. 1985. Discharge of the Changjiang (Yangtze River) into the East China Sea. Cont. Shelf Res., 4(1-2):57-76.
Cheang C C, Chu K H, Ang P O Jr. 2010. Phylogeography of the marine macroalga Sargassum hemiphyllum(Phaeophyceae, Heterokontophyta) in northwestern Pacific. Mol. Ecol., 19(14):2933-2948.
Chen S P, Hu X L, Liu T. 2009. AFLP analysis of seven geographical populations of Epinephelus akaara. Acta Sci. Nat. Univ. Sunyatseni, 48(1):56-61.
Craw D, Burridge C, Anderson L, Waters J M. 2007. Late Quaternary river drainage and fish evolution, Southland, New Zealand. Geomorphology, 84(1-2):98-110.
Dong Y W, Wang H S, Han G D, Ke C H, Zhang X, Nakano T, Williams G A. 2012. The impact of Yangtze River discharge, ocean currents and historical events on the biogeographic pattern of cellana toreuma along the China coast. PLoS One, 7(4):e36178.
Excoffi er L, Smouse P E, Quattro J M. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data. Genetics, 131(2):479-491.
Fang J J, Li Y T, Sun Z H, Deng J Y. 2011. Analysis of runoff change characteristics at Datong station of Yangtze River. Water Res. Power, 29(5):9-12. (in Chinese with English abstract)
Glenn T C, Stephan W, Braun M J. 1999. Effects of a population bottleneck on whooping crane mitochondrial DNA variation. Conserv. Biol., 13(5):1097-1107.
Han G. 2012. Study on Molecular Phylogeography of Several Economical Marine Fish Base on AFLP Markers. Ocean University of China, Qingdao. (in Chinese)
Jung J. 2013. Population Genetic structure of Carassius auratus (Pisces:Cypriniformes) in South Korea Inferred from AFLP Markers:discordance with mitochondrial genetic structure. Anim. Syst. Evol. Divers., 29(1):18-22.
Kai Y, Nakayama K, Nakabo T. 2002. Genetic diff erences among three colour morphotypes of the black rockfish, Sebastes inermis, inferred from mtDNA and AFLP analyses. Mol. Ecol., 11(12):2591-2598.
Kitamura A. 2008. Paleoceanographic changes of the Sea of Japan during 3.5-0.8 Ma. In:Okada H, Mawatari S F, Suzuki N, Gautam P eds. Proceedings of the International Symposium, the Origin and Evolution of Natural Diversity. Century COE for Neo-Science of Natural History, Hokkaido University, Hokkaido. p.187-194.
Li S L, Xu D D, Lou B, Wang W D, Xin J, Mao G M, Zhan W. 2012a. The genetic diversity of wild and hatchery-released Oplegnathus fasciatus from inshore water of Zhoushan revealed by AFLP. Mar. Sci., 36(8):21-27. (in Chinese with English abstract)
Li Y, Song N, Li W T, Gao T X. 2012b. Population genetics of Zostera marina Linnaeus (Zosteraceae) based on AFLP analysis. Biochem. System. Ecol., 44:216-223.
Liu J X, Gao T X, Wu S F, Zhang Y P. 2007. Pleistocene isolation in the Northwestern Pacific marginal seas and limited dispersal in a marine fish, Chelon haematocheilus(Temminck & Schlegel, 1845). Mol. Ecol., 16(2):275-288.
Miller M P. 1997. Tools for population genetic analyses(TFPGA) version 1.3:a windows program for the analysis of allozyme and molecular population genetic data. Department of Biological Sciences, Northern Arizona University.
Nei M, Li W H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U S A, 76(10):5269-5273.
Nei M. 1987. Molecular Evolutionary Genetics. New York:Columbia University Press.
Opazo J C, Burgueño M P, Carter M J, Palma R E, Bozinovic F. 2008. Phylogeography of the subterranean rodent Spalacopus cyanus (Caviomorpha, Octodontidae). J. Mamm., 89(4):837-844.
Peakall R, Smouse P E. 2006. GENALEX 6:genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Not., 6(1):288-295.
Pritchard J K, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics, 155:945-959.
Rice W R. 1989. Analyzing tables of statistical tests. Evolution, 43(1):223-225.
Seeb L W, Seeb J E, Polovina J J. 1990. Genetic variation in highly exploited spiny lobster Panulirus marginatus populations from the Hawaiian Archipelago. Fish. Bull., 88(4):713-718.
Sokal R R, Michener C D. 1958. A statistical method for evaluating systematic relationships. Univ. Kansas Sci. Bull., 38(6):1409-1438.
Song N, Zhang X M, Gao T X. 2010. Genetic diversity and population structure of spottedtail goby (Synechogobius ommaturus) based on AFLP analysis. Biochem. Systems. Ecol., 38(6):1089-1095.
Sun P, Li J, Yi F, Pen S M, Liu M H, Shi Z H. 2011. Genetic variation of mitochondrial control region sequences in cultured Oplegnathus fasciatus. Mar. Fish., 33(1):9-14.(in Chinese with English abstract)
Takami Y, Koshio C, Ishii M, Fujii H, Hidaka T, Shimizu I. 2004. Genetic diversity and structure of urban populations of Pieris butterfl ies assessed using amplifi ed fragment length polymorphism. Mol. Ecol., 13(2):245-258.
Vekemans X, Beauwens T, Lemaire M, Roldán-Ruiz I. 2002. Data from amplifi ed fragment length polymorphism(AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol. Ecol., 11(1):139-151.
Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M. 1995. AFLP:a new technique for DNA fi ngerprinting. Nucl. Acids Res., 23(21):4407-4414.
Wang Z Y, Wang Y L, Lin L M, Qiu S Z, Ben X M. 2002. Genetic polymorphisms in wild and cultured large yellow croaker Pseudosciaena crocea using AFLP fi ngerprinting. J. Fish. Sci. Chin., 9(3):198-202. (in Chinese with English abstract)
Xiao Z Z, Xiao Y S, Ren G J, Gao T X, Tu D Z, Han Z Q, Ma D Y, Xu S H, Liu Q H, Li J. 2013. Comparative analysis on the genetic variation of cultured and wild rock bream Oplegnathus fasciatus population based on mtDNA control region. Oceanol. Limnol. Sin., 44(1):249-254. (in Chinese with English abstract)
Yasuda N, Nagai S, Hamaguchi M, Okaji K, Gérard K, Nadaoka K. 2009. Gene flow of Acanthaster planci (L.) in relation to ocean currents revealed by microsatellite analysis. Mol. Ecol., 18(8):1574-1590.
Zhang H. 2013. Molecular Phylogeography of Two Marine Ovoviviparous Fishes in Northwestern Pacific. Dissertation, Ocean University of China. (in Chinese)
Zhang H, Yu H, Gao T X, Zhang Y, Han Z Q, Xiao Y S. 2012. Analysis of genetic diversity and population structure of Pleuronectes yokohamae indicated by AFLP markers. Biochem. System. Ecol., 44:102-108.
Zhao Y M, Li Q, Kong L F, Mao Y Z. 2009. Genetic and morphological variation in the venus clam Cyclina sinensis along the coast of China. Hydrobiologia, 635(1):227-235.
Zhu B F, Huang Y, Dai Y G, Bi C W, Hu C Y. 2013. Genetic diversity among red swamp crayfish (Procambarus clarkii) populations in the middle and lower reaches of the Yangtze River based on AFLP markers. Genet. Mol. Res., 12(1):791-800.
Copyright © Haiyang Xuebao