Cite this paper:
REN Lihua, ZHANG Jihong. Temporal variation in biodeposit organic content and sinking velocity in long-line shellfish culture[J]. Journal of Oceanology and Limnology, 2016, 34(5): 985-991

Temporal variation in biodeposit organic content and sinking velocity in long-line shellfish culture

REN Lihua1,2,3, ZHANG Jihong1,4
1 Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China;
2 East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai 200090, China;
3 Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
4 Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
We measured the organic content and sinking velocities of biodeposits from two scallop species (Chlamys farreri, Patinopecten yessoensis) and abalone (Haliotis discus hannai) that were cultured on suspended long-lines. Measurements were conducted every two months from April 2010 to February 2011. The shellfish were divided into three size groups (small, middle, and big sizes). At each sample point, we assessed biodeposit organic content, average sinking velocity, the frequency distribution of sinking velocities, and the correlation between organic content and sinking velocity. The organic content of biodeposits varied significantly among months (P<0.05) and the pattern of change varied among species. Sinking velocities varied significantly, ranging from <0.5 cm/s to >1.9 cm/s. The sinking velocities of biodeposits from C. farreri and P. yessoensis were 0.5-1.5 cm/s and from H. discus hannai were <0.7 cm/s. The organic content was significantly negatively correlated to the sinking velocity of biodeposits in C. farreri (P<0.001) and P. yessoensis (P<0.05).
Key words:    biodeposit|organic content|shellfish|sinking velocity   
Received: 2014-10-20   Revised: 2015-04-27
Tools
PDF (409 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by REN Lihua
Articles by ZHANG Jihong
References:
Bayne B L. 1993. Feeding physiology of bivalves:timedependence and compensation for changes in food availability. In:Dame R F ed. Bivalve Filter Feeders in Estuarine and Coastal Ecosystem Processes. SpringerVerlag, Berlin Heidelberg. p.1-24.
Bernard F R. 1974. Annual biodeposition and gross energy budget of mature Pacific Oysters, Crassostrea gigas. J.Fish. Res. Board Can., 31(2):185-190. 7(2):89-100.
Chen Y S, Beveridge M C M, Telfer T C. 1999b. Settling rate characteristics and nutrient content of the faeces of Atlantic salmon, Salmo salar L., and the implications for modelling of solid waste dispersion. Aquac. Res., 30(5):395-398.
Danielsson Å, Jönsson A, Rahm L. 2007. Resuspension patterns in the Baltic proper. J. Sea Res., 57(4):257-269.
Fegley S R, MacDonald B A, Jacobsen T R. 1992. Short-term variation in the quantity and quality of seston available to benthic suspension feeders. Estuar. Coast. Shelf Sci., 34(4):393-412.
Feinberg L R, Dam H G. 1998. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser., 175:87-96.
Giles H, Pilditch C A. 2004. Effects of diet on sinking rates and erosion thresholds of mussel Perna canaliculus biodeposits. Mar. Ecol. Prog. Ser., 282(1):205-219.
Hargrave B T. 2005. Environmental Effects of Marine Finfish Aquaculture. The Handbook of Environmental Chemistry, Vol 5. Water pollution, Part M. Springer-Verlag, Berlin Heidelberg.
Hatcher A, Grant J, Schofield B. 1994. Effects of suspended mussel culture (Mytilus spp.) on sedimentation, benthic respiration and sediment nutrient dynamics in a coastal bay. Mar. Ecol. Prog. Ser., 115(3):219-235.
Haven D S, Morales-Alamo R. 1968. Occurrence and transport of faecal pellets in suspension in a tidal estuary. Sediment.Geol., 2(2):141-151.
Jiang Z J, Fang J G, Mao Y Z, Wang W. 2012. Identification of aquaculture-derived organic matter in the sediment associated with coastal fish farming. J. Fish. Sci. China, 19(2):348-354. (in Chinese with English abstract)
Mao Y Z, Yang H S, Zhou Y, Ye N H, Fang J G. 2009. Potential of the seaweed Gracilaria lemaneiformis for integrated multi-trophic aquaculture with scallop Chlamys farreri in North China. J. App l. Phy col., 21(6):649-656.
McCall P L. 1979. The effects of deposit feeding oligochaetes on particle size and settling velocity of Lake Erie sediments. J. Sediment. Petrol., 49(3):813-818.
Miller D C, Norkko A, Pilditch C A. 2002. Influence of diet on dispersal of horse mussel Atrina zelandica biodeposits.Mar. Ecol. Prog. Ser., 242:153-167.
Mirto S, La Rosa T, Danovaro R, Mazzola A. 2000. Microbial and meiofaunal response to intensive mussel-farm biodeposition in coastal sediments of the western Mediterranean. Mar. Pollut. Bull., 40(3):244-252.
PaCFA. 2009. Global Partnership for Climate, Fisheries and Aquaculture. Fisheries and Aquaculture in Our Changing Climate. Policy Brief available at ftp://ftp.fao.org/FI/brochure/climate_change/policy_brief.pdf. Accessed on 2014-09-05.
Paffenhöfer G A, Knowles S C. 1979. Ecological implications of fecal pellet size, production and consumption by copepods. J. Mar. Sci., 37(1):35-49.
Phillips B, Kremer P, Madin L P. 2009. Defecation by Salpa thompsoni and its contribution to vertical flux in the Southern Ocean. Mar. Biol., 156(3):455-467.
Ploug H, Iversen M H, Koski M et al. 2008. Production, oxygen respiration rates, and sinking velocity of copepod fecal pellets:direct measurement of ballasting by opal and calcite. Limno l. Oceanog., 53(2):469-476.
Qi Z H, Liu H M, Li B et al. 2010. Suitability of two seaweeds Gracilaria lemaneiformis and Sargassum pallidum as feed for the abalone Haliotis discus hannai Ino.Aquaculture, 300(1-4):189-193.
Robison B H, Bailey T G. 1981. Sinking rates and dissolution of midwater fish fecal matter. Mar. Biol., 65(2):135-142.
Sarà G, Scilipoti D, Mazzola A et al. 2004. Effects of fish farming waste to sedimentary and particulate organic matter in a southern Mediterranean area (Gulf of Castellammare, Sicily):a multiple stable isotope study(δ13C and δ15N). Aquaculture, 234(1-4):199-213.
Silvert W, Cromey C J. 2001. Modelling impacts. In:Black K D ed. Environmental Impacts of Aquaculture. Sheffield Academic Press, Sheffield. p.154-181.
Uye S I, Kaname K. 1994. Relations between fecal pellet volume and body size for major zooplankters of the Inland Sea of Japan. J. Oceanogr., 50(1):43-49.
Wang J, Jiang Z H, Chen R S. 2003. Biodeposition by scallop Chlamys farreri. J. Fish. Sci. China, 11(3):225-230. (in Chinese with English abstract)
Wang J, Jiang Z H, Chen R S. 2005. Study on biodeposition by oyster Crassostrea gigas. J. Fish. Sci. China, 29(3):344-349. (in Chinese with English abstract)
Zhang J H, Fang J G, Wang W et al. 2011. Study on the potential of suspended long-line mariculture of the scallop Chlamys farreri in offshore areas. Aquac. Res., 42(11):1 664-1 675.
Zhang J H, Fang J G, Wang W et al. 2012. Growth and loss of mariculture kelp Saccharina japonica in Sungo Bay, China. J. Appl. Phy col., 24(5):1 209-1 216.
Zhang J H, Hansen P K, Fang J G et al. 2009. Assessment of the local environmental impact of intensive marine shellfish and seaweed farming-Application of the MOM system in the Sungo Bay, China. Aquaculture, 287(3-4):304-310.
Zhang J H, Ren L H, Wu W G et al. 2014. Production and sinking rates for bio-deposits of abalone (Haliotis discus hannai Ino). Aquac. Res., 45(12):2 041-2 047.
Zhou Y, Yang H S, Mao Y Z et al. 2003. Biodeposition by the Zhikong scallop Chlamys farreri in Sanggou Bay, Shandong, Northern China. Chinese J. Zool., 38(4):40-44. (in Chinese with English abstract)
Copyright © Haiyang Xuebao