Cite this paper:
WU Ying, WANG Na, ZHANG Jing, WAN Ruijing, DAI Fangqun, JIN Xianshi. Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem[J]. Journal of Oceanology and Limnology, 2016, 34(5): 1085-1096

Compound-specific isotopes of fatty acids as indicators of trophic interactions in the East China Sea ecosystem

WU Ying1, WANG Na1,2, ZHANG Jing1, WAN Ruijing3, DAI Fangqun3, JIN Xianshi3
1 State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China;
2 Tianjin Airport Economic Area, Tianjin 300308, China;
3 Key Laboratory for Sustainable Utilization of Marine Fisheries Resource, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
Abstract:
The composition and compound-specific isotopes of fatty acids were studied within food webs in the East China Sea. Lipid-normalized stable carbon isotopes of total organic carbon had a good correlation with trophic level. Variations in fatty acid compositions among different species were observed but were unclear. Different dietary structures could be traced from molecular isotopes of selected fatty acids in the Shiba shrimp (Matapenaeus joyneri), the coastal mud shrimp (Solenocera crassicornis) and the northern Maoxia shrimp (Acetes chinensis). Both M. joyneri and S. crassicornis are mainly benthos feeders, while A. chinensis is a pelagic species, although they have a similar fatty acid composition. There was a good correlation for isotopes of arachidonic acid (C20:4n6; ARA) and docosahexaenoic acid (C22:6n3; DHA) among pelagic species from higher trophic levels. The isotopic compositions of DHA in benthic species were more negative than those of pelagic species at the same trophic level. The fact that the diet of benthic species contains more degraded items, the carbon isotopes of which are derived from a large biochemical fraction, may be the reason for this variation. A comparative study of benthic and pelagic species demonstrated the different carbon sources in potential food items and the presence of a more complex system at the watersediment interface.
Key words:    fatty acid|compound-specific isotope ratio|stable isotope ratio|East China Sea   
Received: 2015-03-14   Revised: 2015-06-15
Tools
PDF (397 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by WU Ying
Articles by WANG Na
Articles by ZHANG Jing
Articles by WAN Ruijing
Articles by DAI Fangqun
Articles by JIN Xianshi
References:
Alfaro A C, Thomas F, Sergent L, Duxbury M. 2006.Identification of trophic interactions within an estuarine food web (northern New Zealand) using fatty acid biomarkers and stable isotopes. Estu., Coast. Shelf Sci., 70(1-2):271-286.
Alfaro A C. 2008. Diet of Littoraria scabra, while vertically migrating on mangrove trees:gut content, fatty acid, and stable isotope analyses. Estu. Coast. Shelf Sci., 79(4):718-726.
Arts M T, Wainman B C. 1999. Lipids in Freshwater Ecosystems. Springer-Verlag, New York. 319p.
Auel H, Harjes M, da Rocha R, Stübing D, Hagen W. 2002.Lipid biomarkers indicate different ecological niches and trophic relationships of the Arctic hyperiid amphipods Themisto abyssorum and T. libellula. Polar. Biol., 25:347-358.
Ballentine D C, Macko S A, Turekian V C, Gilhooly W P, Martincigh B. 1996. Compound specific isotope analysis of fatty acids and polycyclic aromatic hydrocarbons in aerosols:implications for biomass burning. Org.Geochem., 25(1-2):97-104.
Bell J G, Sargent J R. 2003. Arachidonic acid in aquaculture feeds:current status and future opportunities. Aquaculture, 218(1-4):491-499.
Budge S M, Iverson S J, Koopman H N. 2006. Studying trophic ecology in marine ecosystems using fatty acids:a primer on analysis and interpretation. Mar. Mamm. Sci., 22(4):759-801.
Budge S M, Wooller M J, Springer A M, Iverson S J, McRoy C P, Divoky G J. 2008. Tracing carbon flow in an arctic marine food web using fatty acid stable isotope analysis.Oecologia, 157(1):117-129.
Cai D L, Li H Y, Tang Q S, Sun Y. 2005. Establishment of trophic continuum in the food web of the Yellow Sea and East China Sea ecosystem:insight from carbon and nitrogen stable isotopes. Science in China Series C:Life Sciences, 48(6):531-539.
Cartes J E, Madurell T, Fanelli E, López-Jurado J L. 2008.Dynamics of suprabenthos-zooplankton communities around the Balearic Islands (NW Mediterranean):influence of environmental variables and effects on the biological cycle of Aristeus antennatus. J. Mar. Syst., 71(3-4):316-335.
Cartes J E. 2011. Temporal changes in lipid biomarkers, especially fatty acids, of the deep-sea crustaceans Boreomysis arctica and Nematoscelis megalops:implications of their biological cycle and habitat near the seabed. J. Mar. Biol. Assoc. U. K., 91(4):783-792.
Cheng J Y, Ding F Y, Li S F, Yang L P, Li J S, Liang Z L. 2006.Changes of fish community structure of the coastal zone of northern part of East China Sea in summer. J. Natur.Res., 21(5):775-781. (in Chinese with English abstract)
Choy E J, An S, Kang C K. 2008. Pathways of organic matter through food webs of diverse habitats in the regulated Nakdong River estuary (Korea). Estu., Coast. Shelf Sci., 78(1):215-226.
Cook H W. 1996. Fatty acid desaturation and chain elongation in eukaryotes. In:Vance D E, Vance J E eds. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier, Amsterdam. p.129-152.
Countway R E, Canuel E A, Dickhut R M. 2007. Sources of particulate organic matter in surface waters of the York River, VA estuary. Org. Geochem., 38(3):365-379.
Dahl T M, Falk-Petersen S, Gabrielsen G W, Sargent J R, Hop H, Millar R M. 2003. Lipids and stable isotopes in common eider, black-legged kittiwake and northern fulmar:a trophic study from an Arctic fjord. Mar. Ecol.Prog. Ser., 256:257-269.
Dalsgaard J, St. John M, Kattner G, Müller-Navarra D, Hagen W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol., 46:225-340.
Deng J Y, Meng T X, Ren S M. 1986. Food web of fishes in Bohai Sea. Acta Ecologica Sinica, 6(4):356-364. (in Chinese with English abstract)
Dou S Z. 1996. Feeding ecology of fish-a critical review on theories, methods and their application. Oceanologia et Limnologia Sinica, 27(5):556-561. (in Chinese with English abstract)
Fanelli E, Cartes J E, Rumolo P, Sprovieri M. 2009. Food-web structure and trophodynamics of mesopelagicsuprabenthic bathyal macrofauna of the Algerian Basin based on stable isotopes of carbon and nitrogen. Deep Sea Research Part I:Oceanographic Research Papers, 156(9):1 504-1 520.
Fantle M S, Dittel A I, Schwalm S M, Epifanio C E, Fogel M L. 1999. A food web analysis of the juvenile blue crab, Callinectes sapidus:using stable isotopes in whole animals and individual amino acids. Oecologia, 120(3):416-426.
Folch J, Lees M, Sloane Stanley G H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem., 226(1):497-509.
Fukuda Y, Naganuma T. 2001. Potential dietary effects on the fatty acid composition of the common jellyfish Aurelia aurita. Mar. Biol., 138(5):1 029-1 035.
Gannes L Z, O'Brien D M, del Rio C M. 1997. Stable isotopes in animal ecology:assumptions, caveats and a call for more laboratory experiments. Ecology, 78(4):1 271-1 276.
Goñi M A, Eglinton T I. 1996. Stable carbon isotopic analyses of lignin-derived CuO oxidation products by isotope ratio monitoring-gas chromatography-mass spectrometry (irmGC-MS). Org. Geochem., 24(6-7):601-615.
Graeve M, Kattner F, Wiencke C, Karsten U. 2002. Fatty acid composition of Arctic and Antarctic macroalgae:indicator of phylogenetic and trophic relationships. Mar. Ecol.Prog. Ser., 231:67-74.
Hughes A R, Bando K J, Rodriguez L F, Williams S L. 2004.Relative effects of grazers and nutrients on seagrasses:a meta-analysis approach. Mar. Ecol. Prog. Ser., 282:87-99.
Iverson S J, Field C, Bowen W D, Blanchard W. 2004.Quantitative fatty acid signature analysis:a new method of estimating predator diets. Ecol. Monogr., 74(2):211-235.
Iverson S J, Frost K J, Lang S L C. 2002. Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska:factors contributing to among and within species variability. Mar. Ecol. Prog. Ser., 241:161-181.
Iverson S J. 2009. Tracing aquatic food webs using fatty acids:from qualitative indicators to quantitative determination.In:Kainz M, Brett M T, Arts M T eds. Lipids in Aquatic Ecosystems. Springer-Verlag, New York. p.281-306.
Jaeger A J, Connan M, Richard P, Cherel Y. 2010. Use of stable isotopes to quantify seasonal changes of trophic niche and levels of population and individual specialisation in seabirds. Mar. Ecol. Pro. Ser., 401:269-277.
Jim S, Ambrose S H, Evershed R P. 2003. Natural abundance stable carbon isotope evidence for the routing and de novo synthesis of bone FA and cholesterol. Lipids, 38(2):179-186.
Jin X S, Xu B, Tang Q S. 2003. Fish assemblage structure in the East China Sea and southern Yellow Sea during autumn and spring. J. Fish Biol., 62(5):1 194-1 205.
Kainz M, Arts M T, Mazumder A. 2004. Essential fatty acids in the planktonic food web and their ecological role for the higher trophic levels. Limno. Oceanogr., 49(5):1 784-1 793.
Kim J Y, Kang Y S, Oh H J, Suh Y S, Hwang J D. 2005. Spatial distribution of early life stages of Japanese anchovy(Engraulis japonicus) and hairtail (Trichiurus lepturus) and their relationship with oceanographic features of the East China Sea during the 1997-1998 El Niño Event.Estua., Coast. Shelf Sci., 63(1-2):13-21.
Leaf A. 1993. Omega-3 PUFA, an update:1986-1993.Omega-3 News 1/93., 8:1-4.
Li S F, Yan L P, Li C S, Hu F. 2004. The analysis of fish composition pattern in the northern East China Sea. J. Fish.China, 28(4):384-392. (in Chinese with English abstract)
Lin L S. 2007. Study on feeding habit and trophic level of redlip croaker in Changjiang esturary. Mar. Fish., 29(1):44-48.
McCutchan J H Jr, Lewis W M Jr, Kendall C, McGrath C C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos, 102(2):378-390.
Meier-Augenstein W. 2002. Stable isotope analysis of fatty acids by gas chromatography-isotope ratio mass spectrometry. Anal. Chem. Acta, 465(1-2):63-79.
Michener R H, Schell D M. 1994. Stable isotope ratios as tracers in marine aquatic food webs. In:Lajtha K, Michener R H eds. Stable Isotopes in Ecology and Environmental Sciences. Blackwell, Oxford. p.138-157.
Müller-Navarra D C, Brett M T, Liston A M, Goldman C R. 2000. A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers.Nature, 403(6765):74-77.
Pearson S F, Levey D J, Greenberg C H, del Rio C M. 2003.Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia, 135(4):516-523.
Peterson B J, Fry B. 1987. Stable isotopes in ecosystem studies. Annu. Rev. Ecol. Syst., 18(1):293-320.
Phillips D L, Gregg J W. 2003. Source partitioning using stable isotopes:coping with too many sources. Oecologia, 136(2):261-269.
Phillips D L, Newsome S D, Gregg J W. 2005. Combining sources in stable isotope mixing models:alternative methods. Oecologia, 144(4):520-527.
Post D M. 2002. Using stable isotopes to estimate trophic position:models, methods and assumptions. Ecology, 83(3):703-718.
Ruess L, Tiunov A, Haubert D, Richnow H H, Häggblom M M, Scheu S. 2005. Carbon stable isotope fractionation and trophic transfer of fatty acids in fungal based soil food chains. Soil Biol. Biochem., 37(5):945-953.
Saito H, Kotani Y, Keriko J M, Xue C H, Taki K, Ishihara K, Ueda T, Miyata S. 2002. High levels of n-3 polyunsaturated fatty acids in Euphausia pacifica and its role as a source of docosahexaenoic and icosapentaenoic acids for higher trophic levels. Mar. Chem., 78(1):9-28.
Sargent J R, Henderson R J. 1986. Lipids. In:Corner E D S, O'Hara S C M eds. The Biological Chemistry of Marine Copepods Clarendon Press, Oxford. p.59-108.
Sprecher H. 2000. Metabolism of highly unsaturated n-3 and n-6 fatty acids. Biochim. Biophys. Acta, 1486(2-3):219-231.
Tang Q S. 1999. Strategies of research on marine food web and trophodynamics between high trophic levels. Mar. Fish.Res., 20(2):1-6. (in Chinese with English abstract)
Teece M A, Fogel M L, Dollhopf M E, Nealson K H. 1999.Isotopic fractionation associated with biosynthesis of fatty acids by a marine bacterium under oxic and anoxic conditions. Org. Geochem., 30(12):1 571-1 579.
vander Zander M J, Rasmussen J B. 2001. Variation in δ15N and δ13C trophic fractionation:implications for aquatic food web studies. Limno Oceanogr., 46(8):2 061-2 066.
Wan R J, Wu Y, Huang L, Zhang J, Gao L, Wang N. 2010.Fatty acids and stable isotopes of a marine ecosystem:study on the Japanese anchovy (Engraulis japonicus)food web in the Yellow Sea. Deep Sea Res., 57(11-12):1 047-1 057.
Wang N, Wu Y, Zhang J. 2009. Comparison and unification of carbon stable isotope ratios in specific aquatic biota.Commun. Nonlinear Sci. Numer. Simulat., 14(5):2 502-2 506.
Wei S, Jiang W. 1992. Study on food web of fishes in the Yellow Sea. Oceanologia et Limnologia Sinica, 23(2):182-192. (in Chinese with English abstract)
Zhang B, Tang Q S, Jin X S. 2007. Functional groups of fish assemblages and their major species at high trophic level in the East China Sea. J. Fish. Sci. China, 14(6):939-949.(in Chinese with English abstract)
Zhang B, Tang Q S. 2004. Study on trophic level of important resources species at high trophic levels in the Bohai Sea, Yellow Sea and East China Sea. Advances in Marine Science, 22(4):393-404. (in Chinese with English abstract)
Copyright © Haiyang Xuebao