Cite this paper:
LIANG Xi, WU Lixin. Effects of extratropical solar penetration on North Atlantic Ocean circulation and climate[J]. Journal of Oceanology and Limnology, 2015, 33(1): 243-251

Effects of extratropical solar penetration on North Atlantic Ocean circulation and climate

LIANG Xi, WU Lixin
Physical Oceanography Laboratory, Ocean University of China, Qingdao 266003, China
Abstract:
Effects of extratropical solar penetration on the North Atlantic Ocean circulation and climate are investigated using a coupled ocean-atmosphere model. In this model, solar penetration generates basinwide cooling and warming in summer and winter, respectively. Associated with SST changes, annual mean surface wind stress is intensified in both the subtropical and subpolar North Atlantic, which leads to acceleration of both subtropical and subpolar gyres. Owing to warming in the subtropics and significant saltiness in the subpolar region, potential density decreases (increases) in the subtropical (subpolar) North Atlantic. The north-south meridional density gradient is thereby enlarged, accelerating the Atlantic meridional overturning circulation (AMOC). In addition, solar penetration reduces stratification in the upper ocean and favors stronger vertical convection, which also contributes to acceleration of the AMOC.
Key words:    solar penetration|North Atlantic|Atlantic meridional overturning circulation (AMOC)   
Received: 2013-12-04   Revised: 2014-05-12
Tools
PDF (2157 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIANG Xi
Articles by WU Lixin
References:
Bryan K, Cox M. 1967. A numerical investigation of the oceanic general circulation. Tellus, 19: 54-80.
Denman K. 1973. A time-dependent model of the upper ocean. J. Phys. Oceanogr., 3: 173-184.
Dickey T D, Simpson J J. 1983. The influence of optical water type on the diurnal response of the upper ocean. Tellus, 35B: 142-154.
Hughes T, Weaver A. 1994. Multiple equilibrium of an asymmetric two-basin model. J. Phys. Oceanogr., 24: 619-637.
Jacob R L. 1997. Low Frequency Variability in a Simulated Atmo1sphere Ocean System. Ph.D. thesis, University of Wisconsin-Madison. 155p.
Kuhlbrodt T, Griesel A, Montoya M, Levermann A, Hofmann M, Rahmstorf S. 2007. On the driving processes of the Atlantic meridional overturning circulation. Rev. Geophys., 45: RG2001, http://dx.doi.org/10.1029/2004 RG000166.
Liang X, Wu L. 2013. Effects of solar penetration on the annual cycle of sea surface temperature in the North Pacific. J. Geophys. Res. Oceans, 118: 2 793-2 801, http:// dx.doi.org/10.1002/jgrc.20208.
Lin P, Liu H, Zhang X. 2007. Sensitivity of the upper ocean temperature and circulation in the Equatorial Pacific to solar radiation penetration, Adv. Atmos. Sci., 24: 765-780.
Liu H, Ma J, Lin P, Zhan H. 2012. Numerical study of the effects of ocean color on the sea surface temperature in the southeast tropical Indian Ocean: the role of the barrier layer, Environ. Res. Lett., 7: 024010, http://dx.doi. org/10.1088/1748-9326/7/2/024010.
Manizza M, Le Quere C, Waterson A J, Burtenhhuis E T. 2005. Biooptical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model, Geophys. Res. Lett., 32: L05603, http://dx.doi.org/10.1029/2004GL020778.
Manizza M, Le Quere C, Waterson A J, Burtenhhuis E T. 2008. Ocean biogeochemical response to phytoplankton-light feedback in a global model, J. Geophys. Res., 113, http:// dx.doi.org/10.1029/2007JC004478.
Martin P J. 1985. Simulation of the mixed layer at OWS November and Papa with several models. J. Geophys. Res., 90: 903-916.
Mobley C D. 1994. Light and Water. Academic Press. 592p.
Morel A, Antoine D. 1994. Heating rate within the upper ocean in relation to its biooptical state. J. Phys. Oceanogr., 24: 1 652-1 665.
Morel A. 1988. Optical modeling of the upper ocean in relation to its biogenous matter content (case Iwaters). J. Geophys. Res., 93: 1 652-1 665.
Murtugudde R, Beauchamp J, McClain C R, Lewis M, Busalacchi A J. 2002. Effects of penetrative radiation on the upper tropical ocean circulation. J. Climate, 15: 470- 486.
Murtugudde R, Signorini S, Christian J, Busalacchi A, McClain C, Picaut J. 1999. Ocean color variability of the tropical Indo-Pacific basin observed by SeaWiFS during 1997-98. J. Geophys. Res., 104: 18 351-18 366.
Nakamoto S, Kumar S P, Oberhuber J M, Ishizaka J, Muneyama K, Frouin R. 2001. Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model. Geophys. Res. Lett., 28: 2 021- 2 024.
Ohlmann J C, Siegel D, Washburn L. 1998. Radiant heating of the western equatorial Pacific during TOGA-COARE. J. Geophys. Res., 103: 5 379-5 395.
Ohlmann J C, Siegel D. 2000. Ocean radiant heating. Part II: Parameterizing solar radiation transmission through the upper ocean. J. Phys. Oceanogr., 30: 1 849-1 865.
Park Y G. 1999. The stability of thermohaline circulation in a two-box model. J. Phys. Oceanogr., 29: 3 101-3 110. Paulson C A, Simpson J J. 1977. Irradiance measurements in the upper ocean. J. Phys. Oceanogr., 7: 952-956.
Rochford P A, Kara A B, Wallcraft A J, Arnone R A. 2002. Importance of solar subsurface heating in ocean general circulation models. J. Geophys. Res., 106: 30 923-30 938.
Scott J, Marotzke J, Stone P. 1999. Interhemispheric thermohaline circulation in a coupled box model. J. Phys. Oceanogr., 29: 351-365.
Simonot J-Y, Dollinger E, Treut H Le. 1988. Thermodynamicalbiological- optical coupling in the ocean mixed layer. J. Geophys. Res., 93: 8 193-8 202.
Simpson J J, Dickey T D. 1981. Alternative parameterization of downward irradiance and their dynamical significance. J. Phys. Oceanogr., 11: 876-882.
Stommel H. 1961. Thermohaline convection with two stable regimes of flow. Tellus, 13: 224-230.
Stouffer R, Coauthors. 2006. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Climate, 19: 1 365-1 387.
Sweeney C, Gnanadesikan A, Griffies S M, Harrison M J, Rosati A J, Samuels B L. 2005. Impacts of shortwave penetration depth on large-scale ocean circulation and heat transport. J. Phys. Oceanogr., 35: 1 103-1 119.
Talley L, Reid J, Robbins P. 2003. Date-based meridional overturning streamfunction for the global ocean. J. Climate, 16: 3 213-3 226.
Thorpe R B, Gregory J M, Johns T C, Wood R A, Mitchell J F B. 2001. Mechanisms determining the Atlantic thermohaline circulation response to greenhouse gas forcing in a non-flux-adjusted coupled climate model. J. Climate, 14: 3 102-3 116.
Wang C, Dong S, Munoz E. 2010. Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation, Clim. Dyn., http://dx.doi. org/10.1007/s00382-009-0560-5.
Woods J D, Barkmann W, Horch A. 1984. Solar heating of the oceans—diurnal, seasonal and meridional variation. Quart. J. Roy. Meteor. Soc., 110: 633-656.
Wu L, Li C, Yang C, Xie S P. 2007. Global teleconnections in response to a shutdown of the Atlantic meridional overturning circulation. J. Climate, 21: 3 002-3 019.
Wu L, Liu Z. 2002. Is tropical Atlantic variability driven by the North Atlantic Oscillation? Geophys. Res. Lett., 29: 1 653, http://dx.doi.org/10.1029/2002GL014939.
Wu L, Liu Z. 2005. North Atlantic decadal variability: air-sea coupling, oceanic memory, and potential northern hemisphere resonance. J. Climate, 18: 331-349.
Zaneveld J R, Spinrad R W. 1980. An arc tangent model of irradiance in the sea. J. Geophys. Res., 85: 4 919-4 922.
Copyright © Haiyang Xuebao