Cite this paper:
LIANG Jiayuan, SUN Aijun, ZHANG Yun, DENG Dun, WANG Yongfei, MA Sanmei, HU Yunfeng. Functional characterization of a novel microbial esterase identified from the Indian Ocean and its use in the stereoselective preparation of (R)-methyl mandelate[J]. Journal of Oceanology and Limnology, 2016, 34(6): 1269-1277

Functional characterization of a novel microbial esterase identified from the Indian Ocean and its use in the stereoselective preparation of (R)-methyl mandelate

LIANG Jiayuan1,2, SUN Aijun1,2, ZHANG Yun1,2, DENG Dun1,2, WANG Yongfei4, MA Sanmei4, HU Yunfeng1,2,3
1 Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
2 Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China;
3 South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510275, China;
4 Department of Biotechnology, Jinan University, Guangzhou 510632, China
Abstract:
Genomic mining has identified a novel microbial alkaline esterase from the Indian Ocean. This esterase was overexpressed in E. coli BL21 (DE3) and further functionally characterized. Under optimal conditions (10 mmol/L substrate, pH 6.0, 2 h at 40℃), this esterase can hydrolyze racemic methyl mandelate to (R)-methyl mandelate with very high optical purity (e.e. >99%) and yield (nearly 90%). Interestingly, the stereoselectivity of this esterase is opposite to that of two previously reported lipases that can generate (S)-methyl mandelate through the hydrolysis of racemic methyl mandelate. No organic solvents or other additives were required to optimize the optical purity and production of the final chiral product (R)-methyl mandelate, which can potentially simplify the production procedure of (R)-methyl mandelate catalyzed by esterase.
Key words:    alkaline esterase|kinetic resolution|(R)-methyl mandelate|high optical purity|opposite stereoselectivity   
Received: 2015-06-09   Revised: 2015-09-02
Tools
PDF (350 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LIANG Jiayuan
Articles by SUN Aijun
Articles by ZHANG Yun
Articles by DENG Dun
Articles by WANG Yongfei
Articles by MA Sanmei
Articles by HU Yunfeng
References:
Arpigny J L, Jaeger K E. 1999. Bacterial lipolytic enzymes:classification and properties. Biochem. J., 343(1):177-183.
Banerjee A, Kaul P, Banerjee U C. 2006. Purification and characterization of an enantioselective arylacetonitrilase from Pseudomonas putida. Arch. Microbiol., 184(6):407-418.
Cao Y, Wu S S, Li J H, Wu B, He B F. 2014. Highly efficient resolution of mandelic acid using lipase from Pseudomonas stutzeri LC2-8 and a molecular modeling approach to rationalize its enantioselectivity. J. Mol.Catal. B-Enzym., 99:108-113.
Chen C S, Fujimoto Y, Girdaukas G, Sih C J. 1982. Quantitative analyses of biochemical kinetic resolutions of enantiomers.J. Am. Chem. Soc., 104(25):7 294-7 299.
Chen P R, Yang W H. 2014. Kinetic resolution of mandelate esters via stereoselective acylation catalyzed by lipase PS-30. Tetrahedron Letters, 55(14):2 290-2 294.
Cherif S, Gargouri Y. 2010. An organic-solvent-tolerant esterase from turkey pharyngeal tissue. Bioresour.Technol., 101(10):3 732-3 736.
Friedrich J L R, Peña F P, Garcia-Galan C, Fernandez-Lafuente R, Ayub M A Z, Rodrigues R C. 2013. Effect of immobilization protocol on optimal conditions of ethyl butyrate synthesis catalyzed by lipase B from Candida antarctica. J. Chem. Technol. Biotechnol.., 88(6):1 089-1 095.
Graebin N G, Martins A B, Lorenzoni A S G, Garcia-Galan C, Fernandez-Lafuente R, Ayub M A Z, Rodrigues R C. 2012.Immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads improves butyl acetate synthesis. Biotechnology Progress, 28(2):406-412.
Gröger H. 2001. Enzymatic routes to enantiomerically pure aromatic α-hydroxy carboxylic acids:A further example for the diversity of biocatalysis. Adv. Synth. Catal., 343(6-7):547-558.
Jin P, Pei X L, Du P F, Yin X P, Xiong X L, Wu H L, Zhou X L, Wang Q Y. 2012. Overexpression and characterization of a new organic solvent-tolerant esterase derived from soil metagenomic DNA. Bioresour. Technol., 116:234-240.
Kelley L A, Sternberg M J E. 2009. Protein structure prediction on the Web:a case study using the Phyre server. Nat.Protoc., 4(3):363-371.
Kim B Y, Hwang K C, Song H S, Chung N, Bang W G. 2000.Optical resolution of RS-(±)-mandelic acid by Pseudomonas sp. Biotechnol. Lett., 22(23):1 871-1 875.
Kim K K, Song H K, Shin D H, Hwang K Y, Choe S, Yoo O J, Suh S W. 1997. Crystal structure of carboxylesterase from Pseudomonas fluorescens, an α/β hydrolase with broad substrate specificity. Structure, 5(12):1 571-1 584.
Kinbara K, Sakai K, Hashimoto Y, Nohira H, Saigo K. 1996.Design of resolving reagents:p-substituted mandelic acids as resolving reagents for 1-arylalkylamines.Tetrahedron:Asymmetr, 7(6):1 539-1 542.
Lu G Q, Moriyama E N. 2004. Vector NTI, a balanced all-inone sequence analysis suite. Brief. Bioinform., 5(4):378-388.
Ma J B, Wu L, Guo F, Gu J L, Tang X L, Jiang L, Liu J, Zhou J H, Yu H W. 2013. Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Appl. Microbiol. Biotechnol., 97(11):4 897-4 906.
Ollis D L, Cheah E, Cygler M, Dijkstra B, Frolow F, Franken S M, Harel M, Remington S J, Silman I, Schrag J, Sussman J L, Verschueren K H G, Goldman A. 1992. The α/β hydrolase fold. Protein Eng., 5(3):197-211.
Sussman J L, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I. 1991. Atomic structure of acetylcholinesterase from Torpedo californica:a prototypic acetylcholinebinding protein. Science, 253(5022):872-879.
Tsuchiya S, Miyamoto K, Ohta H. 1992. Highly efficient conversion of (±)-mandelic acid to its (R)-(-)-enantiomer by combination of enzyme-mediated oxidation and reduction. Biotechnol. Lett., 14(12):1 137-1 142.
Wei H N, Wu B. 2008. Screening and immobilization Burkholderia sp. GXU56 lipase for enantioselective resolution of (R,S)-methyl mandelate. Appl. Biochem.Biotechnol., 149(1):79-88.
Xiao M T, Huang Y Y, Ye J, Guo Y H. 2008. Study on the kinetic characteristics of the asymmetric production of R-(-)-mandelic acid with immobilized Saccharomyces cerevisiae FD11b. Biochem. Eng. J., 39(2):311-318.
Yadav G D, Sivakumar P. 2004. Enzyme-catalysed optical resolution of mandelic acid via RS(∓)-methyl mandelate in non-aqueous media. Biochem. Eng. J., 19(2):101-107.
Yao C J, Cao Y, Wu S S, Li S, He B F. 2013. An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ01:Purification, characteristics and application for chiral resolution of mandelic acid. J. Mol. Catal. BEnzym, 85-86:105-110.
Zhang Z J, Xu J H, He Y C, Ouyang L M, Liu Y Y, Imanaka T. 2010. Efficient production of (R)-(-)-mandelic acid with highly substrate/product tolerant and enantioselective nitrilase of recombinant Alcaligenes sp. Process Biochemistry, 45(6):887-891.
Copyright © Haiyang Xuebao