Cite this paper:
YUAN Dongliang, XU Peng, XU Tengfei. Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model[J]. Journal of Oceanology and Limnology, 2017, 35(1): 23-38

Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

YUAN Dongliang1,2, XU Peng1,3, XU Tengfei4
1 Key Laboratory of Ocean Circulation and Waves(KLOCAW), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
2 Qingdao Collaborative Innovation Center of Marine Science and Technology, Qingdao 266003, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
Abstract:
An experiment using the Community Climate System Model (CCSM4), a participant of the Coupled Model Intercomparison Project phase-5 (CMIP5), is analyzed to assess the skills of this model in simulating and predicting the climate variabilities associated with the oceanic channel dynamics across the Indo-Pacific Oceans. The results of these analyses suggest that the model is able to reproduce the observed lag correlation between the oceanic anomalies in the southeastern tropical Indian Ocean and those in the cold tongue in the eastern equatorial Pacific Ocean at a time lag of 1 year. This success may be largely attributed to the successful simulation of the interannual variations of the Indonesian Throughflow, which carries the anomalies of the Indian Ocean Dipole (IOD) into the western equatorial Pacific Ocean to produce subsurface temperature anomalies, which in turn propagate to the eastern equatorial Pacific to generate ENSO. This connection is termed the "oceanic channel dynamics" and is shown to be consistent with the observational analyses. However, the model simulates a weaker connection between the IOD and the interannual variability of the Indonesian Throughflow transport than found in the observations. In addition, the model overestimates the westerly wind anomalies in the western-central equatorial Pacific in the year following the IOD, which forces unrealistic upwelling Rossby waves in the western equatorial Pacific and downwelling Kelvin waves in the east. This assessment suggests that the CCSM4 coupled climate system has underestimated the oceanic channel dynamics and overestimated the atmospheric bridge processes.
Key words:    Indian Ocean Dipole|El Niñ    o-Southern Oscillations (ENSO)|oceanic channel|Community Climate System Model (CCSM4)|Indonesian Throughflow|ENSO predictability   
Received: 2015-06-12   Revised: 2015-08-15
Tools
PDF (3906 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YUAN Dongliang
Articles by XU Peng
Articles by XU Tengfei
References:
Alexander M A, Bladé I, Newman M, Lanzante J R, Lau N C, Scot J D. 2002. The atmospheric bridge: the influence of Enso teleconnections on air-sea interaction over the global oceans. J. Climate, 15(16): 2 205-2 231.
An S I, Ham Y G, Kug J S, Jin F F, Kang I S. 2005. El Niño La Niña asymmetry in the coupled model intercomparison project simulations. J. Climate, 18(14): 2 617-2 627.
Annamalai H, Xie S P, McCreary J P, Murtugudde R. 2005.Impact of Indian Ocean sea surface temperature on developing El Nino. J. Climate, 18(2): 302-319.
Clarke A J, Liu X. 1994. Interannual sea level in the northern and eastern Indian Ocean. J. Phys. Oceanogr., 24(6):1 224-1 235.
Clarke A J, van Gorder S. 2003. Improving El Niño prediction using a space-time integration of Indo-Pacific winds and equatorial Pacific upper ocean heat content. Geophys. Res.Lett., 30(7), http://dx.doi.org/10.1029/2002GL016673.
Craig A P, Vertenstein M, Jacob R. 2012. A new flexible coupler for earth system modeling developed for CCSM4 and CESM1. Int. J. High Perform. Comput. Appl., 26(1):31-42.
Dommenget D, Bayr T, Frauen C. 2013. Analysis of the nonlinearity in the pattern and time evolution of El Niño southern oscillation. Climate Dynamics, 40(11-12):2 825-2 847.
Gent P R, Danabasoglu G, Donner L J, Holland M M, Hunke E C, Jayne S R, Lawrence D M, Neale R B, Rasch P J, Vertenstein M, Worley P H, Yang Z L, Zhang M H. 2011.The community climate system model version 4. J.Climate, 24: 4 973-4 991.
Hunke E C, Lipscomb W H. 2008. CICE: the los alamos sea ice model, documentation and software user's manual, version 4.0. Los Alamos National Laboratory. Technology Report, LA-CC-06-012.
Izumo T, Vialard J, Lengaigne M, Montegut C D B, Behera S K, Luo JJ, Cravatte S, Masson S, Yamagata T. 2010.Influence of the state of the Indian Ocean Dipole on the following year's El Niño. Nat. Geosci., 3(3): 168-172.
Kalnay E, Kanamitsu M, Kistler R et al. 1996. The NCEPNCAR 40-Year reanalysis project. Bull. Am. Meteor. Soc., 77(3): 437-472.
Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: evidence for a tropical atmospheric bridge. J. Climate, 12(4): 917-932.
Kug J S, Kang I S. 2006. Interactive feedback between ENSO and the Indian Ocean. J. Climate., 19(9): 1 784-1 801.
Kug J S, Li T, An S I, Kang I S, Luo J J, Masson S. 2006. Role of the ENSO-Indian Ocean coupling on ENSO variability in a coupled GCM. Geophys. Res. Lett., 33(9), http://dx.doi.org/10.1029/2005GL024916.
Lau N C, Leetmaa A, Nath M J, Wang H L. 2005. Influence of ENSO-induced Indo-Western Pacific SST anomalies on extratropical atmospheric variability during the boreal summer. J. Climate, 18(15): 2 922-2 942.
Lau N C, Nath M J. 2003. Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes. J. Climate, 16(1): 3-20.
Lawrence D M, Oleson K W, Flanner M G, Thornton P E, Swenson S C, Lawrence P J, Zeng X B, Yang Z L, Levis S, Skaguchi K, Bonan G B, Slater A G. 2011.Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model Earth Syst., 3(1), http://dx.doi.org/10.1029/2011MS000045.
Luo J J, Zhang R C, Behera S K, Masumoto Y, Jin F F, Lukas R, Yamagata T. 2010. Interaction between El Niño and extreme Indian Ocean dipole. J. Climate, 23(3): 726-742, http://dx.doi.org/10.1175/2009JCLI3104.1.
Meehl G A, Boer G J, Covey C et al. 2000. The coupled model intercomparison project (CMIP). Bull. Am. Meteor. Soc., 81(2): 313-318.
Meyers G, Bailey R J, Woorby A P. 1995. Geostrophic transport of Indonesian Throughflow. Deep Sea Research Part I:Oceanographic Research Papers, 42(7): 1 163-1 174.
Meyers G. 1996. Variation of indonesian throughflow and the El Niño-southern oscillation. J. Geophys. Res, 101(C5):12 255-12 263.
Neale R B, Richter J, Park S, Lauritzen P H, Vavrus S J, Rasch P J, Zhang M H. 2013. The mean climate of the Community Atmosphere Model (CAM4) in forced SST and fully coupled experiments. J. Climate, 26(14): 5 150-5 168.
Ohba M, Nohara D, Ueda H. 2010. Simulation of asymmetric ENSO transition in WCRP CMIP3 multimodel experiments. J. Climate, 23(22): 6 051-6 067.
Ohba M, Ueda H. 2005. Basin-wide warming in the equatorial Indian Ocean associated with El Niño. SOLA, 1: 89-92, http://dx.doi.org//10.2151/sola.2005-024.
Ohba M, Ueda H. 2007. An impact of SST anomalies in the Indian Ocean in acceleration of the El Niño to La Niña transition. J. Meteor. Soc. Japan, 85(3): 335-348.
Ohba M, Ueda H. 2009a. Role of nonlinear atmospheric response to SST on the asymmetric transition process of ENSO. J. Climate, 22(1): 177-192.
Ohba M, Ueda H. 2009b. Seasonally different response of the Indian Ocean to the remote forcing of El Niño: linking the dynamics and thermodynamics. SOLA, 5: 176-179.
Ohba M, Watanabe M. 2012. Role of the Indo-Pacific interbasin coupling in predicting asymmetric ENSO transition and duration. J. Climate, 25(9): 3 321-3 335.
Ohba M. 2013. Important factors for long-term change in ENSO transitivity. Int. J. Climatol., 33(6): 1 495-1 509.
Okumura Y M, Ohba M, Deser C, Ueda H. 2011. A proposed mechanism for the asymmetric duration of El Niño and La Niña. J. Climate, 24(15): 3 822-3 829.
Rayner N A, Parker D E, Horton E B, Folland C K, Alexander L V, Rowell D P, Kent E C, Kaplan A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J.Geophys. Res., 108(D14), http://dx.doi.org/10.1029/2002JD002670.
Saji N H, Goswami B N, Vinayachandran P N, Yamagata T. 1999. A dipole mode in the tropical Indian Ocean. Nature, 401(6751): 360-363.
Smith R D, Jones P W, Briegleb B et al. 2010. The parallel ocean program (POP) reference manual: ocean component of the community climate system model (CCSM). Los Alamos National Laboratory, LAUR-10-01853.
Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteor.Soc., 93(4): 485-498, http://dx.doi.org/10.1175/BAMS-D-11-00094.1.
White W B. 1995. Design of a global observing system for gyre-scale upper ocean temperature variability. Prog.Oceanogr., 36(3): 169-217.
Wijffels S E, Meyers G, Godfrey J S. 2008. A 20-yr average of the Indonesian Throughflow: regional currents and the interbasin exchange. J. Phys. Oceanogr., 38(9): 1 965-1 978.
Wijffels S E, Meyers G. 2004. An intersection of oceanic waveguides: variability in the Indonesian Throughflow region. J. Phys. Oceanogr., 34(5): 1 232-1 253.
Xie S P, Hu K M, Hafner J et al. 2009. Indian Ocean capacitor effect on Indo-western Pacific climate during the summer following El Niño. J. Climate, 22(3): 730-747.
Xu T F, Yuan D L, Yu Y Q, Zhao X. 2013. An assessment of Indo-Pacific oceanic channel dynamics in the FGOALS-g2 coupled climate system model. Adv. Atmos. Sci., 30(4):997-1 016, http://dx.doi.org/10.1007/s00376-013-2131-2.
Yuan D L, Wang J, Xu T F, Xu P, Hui Z, Zhao X. 2011. Forcing of the indian ocean dipole on the interannual variations of the tropical pacific ocean: roles of the Indonesian Throughflow. J. Climate, 24(14): 3 593-3 608.
Yuan D L, Zhou H, Zhao X. 2013. Interannual climate variability over the tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow.J. Climate, 26(9): 2 845-2 861.
Copyright © Haiyang Xuebao