Cite this paper:
YANG Xianping, SOKOLETSKY Leonid, WEI Xiaodao, SHEN Fang. Suspended sediment concentration mapping based on the MODIS satellite imagery in the East China inland, estuarine, and coastal waters[J]. Journal of Oceanology and Limnology, 2017, 35(1): 39-60

Suspended sediment concentration mapping based on the MODIS satellite imagery in the East China inland, estuarine, and coastal waters

YANG Xianping, SOKOLETSKY Leonid, WEI Xiaodao, SHEN Fang
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Abstract:
The purpose of this research is to improve the retrieval accuracy for the suspended sediment concentration (SSC) from in situ and satellite remote sensing measurements in turbid East China estuarine and coastal waters. For this aim, three important tasks are formulated and solved: 1) an estimation of remote-sensing reflectance spectra Rrs(λ) after atmospheric correction; 2) an estimation of Rrs(λ) from the radiometric signals above the air-water surface; and 3) an estimation of SSC from Rrs(λ). Six different models for radiometric R rs(λ) determination and 28 models for SSC versus Rrs(λ) are analyzed based on the field observations made in the Changjiang River estuary and its adjacent coastal area. The SSC images based on the above-mentioned analysis are generated for the area.
Key words:    ocean optics|turbid estuarine and coastal waters|remote-sensing reflectance|suspended sediment concentration|atmospheric correction   
Received: 2015-03-03   Revised: 2015-07-13
Tools
PDF (3134 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by YANG Xianping
Articles by SOKOLETSKY Leonid
Articles by WEI Xiaodao
Articles by SHEN Fang
References:
Aas E. 2010. Estimates of radiance reflected towards the zenith at the surface of the sea. Ocean Sci., 6(4): 861-876.
Albert A, Gege P. 2006. Inversion of irradiance and remote sensing reflectance in shallow water between 400 and 800 nm for calculations of water and bottom properties.Appl. Opt., 45(10): 2 331-2 343.
Ben-David A. 1995. Multiple-scattering transmission and an effective average photon path length of a plane-parallel beam in a homogeneous medium. Appl. Opt., 34(15):2 802-2 810.
Ben-David A. 1997. Multiple-scattering effects on differential absorption for the transmission of a plane-parallel beam in a homogeneous medium. Appl. Opt., 36(6): 1 386-1 398.
Binding C E, Bowers D G, Mitchelson-Jacob E G. 2005.Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; the impact of variable particle scattering properties.Remote Sens. Environ., 94(3): 373-383.
Buiteveld H, Hakvoort J H M, Donze M. 1994. Optical properties of pure water. In: Jaffe J S ed. Proceedings of SPIE, Ocean Optics XⅡ. SPIE, Bergen, Norway, 2258:174-183.
Chen J, Quan W T, Cui T W, Song Q J. 2015. Estimation of total suspended matter concentration from MODIS data using a neural network model in the China eastern coastal zone.Estuarine, Coastal and Shelf Science, 155: 104-113.
Cox C, Munk W. 1954. Measurement of the roughness of the sea surface from photographs of the sun's glitter. J. Opt.Soc. Am., 44(11): 838-850.
Cracknell A P. 1999. Twenty years of publication of the International Journal of Remote Sensing. Int. J. Remote Sens., 20(18): 3 469-3 484.
D'Sa E J, Miller R L, McKee B A. 2007. Suspended particulate matter dynamics in coastal waters from ocean color:application to the northern Gulf of Mexico. Geophys. Res.Lett., 34(23): L23611, http://dx.doi.org/10.1029/2007GL031192.
Doxaran D, Cherukuru R C N, Lavender S J. 2004. Estimation of surface reflection effects on upwelling radiance field measurements in turbid waters. J. Opt. A: Pure Appl. Opt., 6(7): 690-697.
Doxaran D, Cherukuru R C N, Lavender S J. 2005. Use of reflectance band ratios to estimate suspended and dissolved matter concentrations in estuarine waters. Int. J.Remote Sens., 26(8): 1 763-1 769.
Doxaran D, Ehn J, Bélanger S, Matsuoka A, Hooker S, Babin M. 2012. Optical characterisation of suspended particles in the Mackenzie River plume (Canadian Arctic Ocean)and implications for ocean colour remote sensing.Biogeosciences, 9(8): 3 213-3 229.
Doxaran D, Froidefond J M, Castaing P. 2002. A reflectance band ratio used to estimate suspended matter concentrations in sediment-dominated coastal waters. Int.J. Remote Sens., 23(23): 5 079-5 085.
Doxaran D, Froidefond J M, Castaing P. 2003. Remote-sensing reflectance of turbid sediment-dominated waters.Reduction of sediment type variations and changing illumination conditions effects by use of reflectance ratios.Appl. Opt., 42(15): 2 623-2 634.
Gordon H R, Brown O B, Evans R H, Brown J W, Smith R C, Baker K S, Clark D K. 1988. A semianalytic radiance model of ocean color. J. Geophys. Res., 93(D9): 10 909-10 924.
Gordon H R, Castaño D J. 1987. Coastal Zone Color Scanner atmospheric correction algorithm: multiple scattering effects. Appl. Opt., 26(11): 2 111-2 122.
Gordon H R, McCluney W R. 1975. Estimation of the depth of sunlight penetration in the sea for remote sensing. Appl.Opt., 14(2): 413-416.
Gordon H R, Voss K J. 2004. MODIS normalized waterleaving radiance, algorithm theoretical basis document(MODIS 18), Version 5. University Miami, Coral Gables, FL, US.
Gueymard C A. 2001. Parameterized transmittance model for direct beam and circumsolar spectral irradiance. Solar Energy, 71(5): 325-346.
Gueymard C A. 2003. Direct solar transmittance and irradiance predictions with broadband models. Part I: detailed theoretical performance assessment. Solar Energy, 74(5):355-379.
Gueymard C A. 2008. REST2: high-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation-Validation with a benchmark dataset. Solar Energy, 82(3): 272-285.
Gueymard C. 1995. SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment. Report FSEC-PF-270-95, Florida Solar Energy Center, Cocoa, FL.
Haltrin V I, Gallegos S C. 2003. About nonlinear dependence of remote sensing and diffuse reflectance coefficients of Gordon's parameter. In: Levin I, Gilbert G eds. Proceedings of the Ⅱ International Conference "Current Problems in Optics of Natural Waters" ONW-2003. SaintPetersburg, Russia. p.363-369.
Han L, Rundquist D C. 1994. The response of both surface reflectance and the underwater light field to various levels of suspended sediments: preliminary results. Photogr.Eng. Remote Sens., 60(12): 1 463-1 471.
Han Z, Jin Y Q, Yin C X. 2006. Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data. Int. J. Remote Sens., 27(19):4 329-4 336.
Harrington Jr J A, Schiebe F R, Nix J F. 1992. Remote sensing of Lake Chicot, Arkansas: monitoring suspended sediments, turbidity, and Secchi depth with Landsat MSS data. Remote Sens. Environ., 39(1): 15-27.
He Q, Yun C X, Shi F R. 1999. Remote sensing analysis of suspended sediment concentration in water surface layer in the Changjiang estuary. Progr. Nat. Sci., 9(6): 160-164.
He X Q, Bai Y, Pan D L, Huang N L, Dong X, Chen J S, Chen C T A, Cui Q F. 2013. Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters. Remote Sens.Environ., 133: 225-239.
He X Q, Bai Y, Pan D L, Tang J W, Wang D F. 2012.Atmospheric correction of satellite ocean color imagery using the ultraviolet wavelength for highly turbid waters.Optics Express, 20(18): 20 754-20 770.
Herman B M, Browning S R. 1965. A numerical solution to the equation of radiative transfer. J. Atmos. Sci., 22(5): 559-566.
Højerslev N K. 2001. Analytic remote-sensing optical algorithms requiring simple and practical field parameter inputs. Appl. Opt., 40(27): 4 870-4 874.
Hu C M, Lee Z P, Ma R H, Yu K, Li DQ, Shang S L. 2010.Moderate resolution imaging spectroradiometer (MODIS)observations of cyanobacteria blooms in Taihu Lake, China. J. Geophys. Res., 115(C4), http://dx.doi.org/10.1029/2009JC005511.
Jerlov N G. 1976. Marine Optics. Elsevier Scientific, New York, 230p.
Jiang X W, Tang J W, Zhang M W, Ma R H, Ding J. 2009.Application of MODIS data in monitoring suspended sediment of Taihu Lake, China. Chin. J. Oceanol. Limnol., 27(3): 614-620.
Kiyomoto Y, Iseki K, Okamura K. 2001. Ocean color satellite imagery and shipboard measurements of chlorophyll a and suspended particulate matter distribution in the East China Sea. J. Oceanogr., 57(1): 37-45.
Kou L, Labrie D, Chylek P. 1993. Refractive indices of water and ice in the 0.65- to 2.5-μm spectral range. Appl. Opt., 32(19): 3 531-3 540.
Lee Z P, Ahn Y H, Mobley C, Arnone R. 2010. Removal of surface-reflected light for the measurement of remotesensing reflectance from an above-surface platform.Optics Express, 18(25): 26 313-26 324.
Lee Z P, Carder K L, Arnone R A. 2002. Deriving inherent optical properties from the water color: a multiband quasianalytical algorithm for optically deep waters. Appl. Opt., 41(27): 5 755-5 772.
Lee Z P, Carder K L, Mobley C D, Steward R G, Patch J S. 1999. Hyperspectral remote sensing for shallow waters: 2.deriving bottom depths and water properties by optimization. Appl. Opt., 38(18): 3 831-3 843.
Li D J, Dag D. 2004. Ocean pollution from land-based sources:East China Sea, China. AMBIO, 33(1): 107-113.
Li J F, Shi W R, Shen H T. 1994. Sediment properties and transportation in the turbidity maximum in Changjiang estuary. Geograhical Research, 13(1): 51-59. (in Chinese with English abstract)
Li P, Yang S L, Milliman J D, Xu K H, Qin W H, Wu C S, Chen Y P, Shi B W. 2012. Spatial, temporal, and human-induced variations in suspended sediment concentration in the surface of the Yangtze Estuary and adjacent coastal Areas.Estuaries and Coasts, 35(5): 1 316-1 327.
Liu W B, Yu Z F, Zhou B, Jiang J G, Pan Y L, Ling Z Y. 2013.Assessment of suspended sediment concentration at the Hangzhou Bay using HJ CCD imagery. J. Remote Sens., 17(4): 905-918. (in Chinese with English abstract)
Lu Z. 2006. Optical absorption of pure water in the blue and ultraviolet. Texas A&M University, College Station, Texas, 100p.
Ma R H, Dai J F. 2005. Investigation of chlorophyll-a and total suspended matter concentrations using Landsat ETM and field spectral measurement in Taihu Lake, China. Int. J.Remote Sens., 26(13): 2 779-2 795.
Meng Q, Mao Z, Huang H, Shen Y. 2013. Inversion of suspended sediment concentration at the Hangzhou Bay based on the high-resolution satellite HJ-1A/B imagery. 8p. In: Gao W, Jackson T J, Wang J, Chang N-B eds.Proceedings of SPIE Remote Sensing and Modeling of Ecosystems for Sustainability X. 8869.
Mobley C D. 1999. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt., 38(36): 7 442-7 255.
Nechad B, Ruddick K G, Park Y. 2010. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens.Environ., 114(4): 854-866.
Neteler M. 2014. MODIS bands and wavelengths. http://gis.cri.fmach.it/modis-sensor/.
Ouillon S, Douillet P, Andréfouët S. 2004. Coupling satellite data with in situ measurements and numerical modeling to study fine suspended-sediment transport: a study for the lagoon of New Caledonia. Coral Reefs, 23(1): 109-122.
Ouillon S, Douillet P, Petrenko A, Neveux J, Dupouy C, Froidefond J M, Andréfouët S, Muñoz-Caravaca A. 2008.Optical algorithms at satellite wavelengths for total suspended matter in tropical coastal waters. Sensors, 8(7):4 165-4 185.
Pope R M, Fry E S. 1997. Absorption spectrum (380-700 nm) of pure water. Ⅱ. Integrating cavity measurements. Appl.Opt., 36(33): 8 710-8 723.
Pozdnyakov D V, Kondratyev K Y, Bukata R P, Jerome J H. 1998. Numerical modelling of natural water colour:implications for remote sensing and limnological studies.Int. J. Remote Sens., 19(10): 1 913-1 932.
Prahl S A, Jacques S L. 1998. http://omlc.org/spectra/water/data/kou93b.dat.
Qu L Q. 2014. Remote sensing suspended sediment concentration in the Yellow River. University of Connecticut, Mansfield, Connecticut, US. 128p.
Rahman H, Dedieu G. 1994. SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens., 15(1): 123-143.
Remer L A, Kaufman Y J, Tanré D et al. 2005. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci., 62(4): 947-973.
Ruddick K G, Cauwer V D, Park Y J, Moore G. 2006. Seaborne measurements of near infrared water-leaving reflectance:the similarity spectrum for turbid waters. Limnology and Oceanography, 51(2): 1 167-1 179.
Salama M S, Shen F. 2010. Simultaneous atmospheric correction and quantification of suspended particulate matters from orbital and geostationary earth observation sensors. Estuarine, Coastal and Shelf Science, 86(3): 499-511.
Schiebe F R, Harrington Jr J A, Ritchie J C. 1992. Remote sensing of suspended sediments: the Lake Chicot, Arkansas project. Int. J. Remote Sens., 13(8): 1 487-1 509.
Sekera Z. 1970. Reciprocity relations for diffuse reflection and transmission of radiative transfer in the planetary atmosphere. The Astrophysical Journal, 162: 3, http://dx.doi.org/10.1086/150629.
Shen F, Salama M S, Zhou Y X, Li J F, Su Z B, Kuang D B. 2010b. Remote-sensing reflectance characteristics of highly turbid estuarine waters-a comparative experiment of the Yangtze River and the Yellow River. Int. J. Remote Sens., 31(10): 2 639-2 654.
Shen F, Verhoef W, Zhou Y X, Salama M S, Liu X L. 2010a.Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data. Estuaries and Coasts, 33(6): 1 420-1 429.
Shen F, Zhou Y X, Li D J, Zhu W J, Salama M S. 2010c.Medium resolution imaging spectrometer (MERIS) estimation of chlorophyll-a concentration in the turbid sediment-laden waters of the Changjiang (Yangtze) Estuary. Int. J. Remote Sens., 31(17-18): 4 635-4 650.
Shen F, Zhou Y X, Li J F, He Q, Verhoef W. 2013. Remotely sensed variability of the suspended sediment concentration and its response to decreased river discharge in the Yangtze estuary and adjacent coast. Continental Shelf Research, 69: 52-61.
Shen F, Zhou Y X, Peng X Y, Chen Y L. 2014. Satellite multisensor mapping of suspended particulate matter in turbid estuarine and coastal ocean, China. Int. J. Remote Sens., 35(11-12): 4 173-4 192.
Shi W, Wang M H. 2010. Satellite observations of the seasonal sediment plume in central East China Sea. J. Mar. Syst., 82(4): 280-285.
Simis S G H, Olsson J. 2013. Unattended processing of shipborne hyperspectral reflectance measurements.Remote. Sens. Environ., 135: 202-212.
Siswanto E, Tang J W, Yamaguchi H et al. 2011. Empirical ocean-color algorithms to retrieve chlorophyll-a, total suspended matter, and colored dissolved organic matter absorption coefficient in the Yellow and East China Seas.J. Oceanogr., 67(5): 627-650.
Sokoletsky L G, Budak V P, Lunetta R S. 2009. Modeling the plane albedo of absorbing and scattering layers with a special emphasis on natural waters. In: Levin I, Gilbert G eds. Proceedings of the V International Conference "Current Problems in Optics of Natural Waters" ONW-2009. ONW, Saint-Petersburg, Russia. p.287-292.
Sokoletsky L G, Lunetta R S, Wetz M S, Paerl H W. 2011.MERIS retrieval of water quality components in the turbid Albemarle-Pamlico Sound Estuary, USA. Remote Sens., 3(4): 684-707.
Sokoletsky L G, Lunetta R S, Wetz M S, Paerl H W. 2012.Assessment of the water quality components in turbid estuarine waters based on radiative transfer approximations. Israel Journal of Plant Sciences, 60(1-2): 209-229.
Sokoletsky L G, Shen F. 2014. Optical closure for remotesensing reflectance based on accurate radiative transfer approximations: the case of the Changjiang (Yangtze) River Estuary and its adjacent coastal area, China. Int. J.Remote Sens., 35(11-12): 4 193-4 224.
Sokoletsky L, Gallegos S. 2010. Towards development of an improved technique for remotely-sensed retrieval of water quality components: an approach based on the Gordon's parameter spectral ratio. In: Proceedings of Ocean Optics XX Conference. SPIE, Anchorage, Alaska, USA.
Sokoletsky L, Shen F. 2013. Turbidity classification of Chinese natural waters. In: Asian Workshop on Ocean Color(AWOC) 2013. Tainan, Taiwan, China, 3-5 December 2013, https://www.researchgate.net/publication/282858398_Turbidity_classification_of_Chinese_natural_waters#full-text.
Sokoletsky L, Yang X P, Shen F. 2014a. MODIS-based retrieval of suspended sediment concentration and diffuse attenuation coefficient in Chinese estuarine and coastal waters. In: Proceedings of SPIE, Ocean Remote Sensing and Monitoring from Space. SPIE, Beijing, China. 9261:926119-1-926119-25.
Sokoletsky L, Yang X P, Shen F. 2014c. Modeling the direct to diffuse downwelling irradiance ratio based on the atmospheric spectral radiation model. In: Proceedings of Ocean Optics XXⅡ. SPIE, Portland, Maine, USA.Sokoletsky, L G, Budak V P, Shen F, Kokhanovsky A A. 2014b.
Comparative analysis of radiative transfer approaches for calculation of plane transmittance and diffuse attenuation coefficient of plane-parallel light scattering layers. Appl.Opt., 53(3): 459-468.
Sravanthi N, Ramana I V, Yunus Ali P, Ashraf M, Ali M M, Narayana A C. 2013. An algorithm for estimating suspended sediment concentrations in the coastal waters of India using remotely sensed reflectance and its application to coastal environments. Int. J. Environ. Res., 7(4): 841-850.
Sturm B, Zibordi G. 2002. SeaWiFS atmospheric correction by an approximate model and vicarious calibration. Int. J.Remote Sens., 23(3): 489-501.
Toole D A, Siegel D A, Menzies D W, Neumann M J, Smith R C. 2000. Remote-sensing reflectance determinations in the coastal ocean environment: impact of instrumental characteristics and environmental variability. Appl. Opt., 39(3): 456-469.
van de Hulst H C. 1980. Multiple Light Scattering: Tables, Formulas and Application. Vol. 1. Academic Press, New York. 316p.
Wang J J, Lu X X, Liew S C, Zhou Y. 2009. Retrieval of suspended sediment concentrations in large turbid rivers using Landsat ETM+: an example from the Yangtze River, China. Earth Surface Processes and Landforms, 34(8):1 082-1 092.
Wang J J, Lu X X, Liew S C, Zhou Y. 2010a. Remote sensing of suspended sediment concentrations of large rivers using multi-temporal MODIS images: an example in the Middle and Lower Yangtze River, China. Int. J. Remote Sens., 31(4): 1 103-1 111.
Wang J J, Lu X X, Zhou Y. 2007. Retrieval of suspended sediment concentrations in the turbid water of the Upper Yangtze River using Landsat ETM+. Chinese Science Bulletin, 52(S2): 273-280.
Wang J J, Lu X X. 2010. Estimation of suspended sediment concentrations using Terra MODIS: an example from the Lower Yangtze River, China. Sci. Total Environ., 408(5):1 131-1 138.
Wang M, Antoine D, Frouin R, Gordon H R, Fukushima H, Morel A, Nicolas J M, Deschamps P Y. 2010b. Chapter 4.Comparison results. In: Wang M ed. Atmospheric Correction for Remotely-Sensed Ocean-Colour Products.IOCCG Report No. 10, NOAA/NESDIS Center for Satellite Applications and Research, USA. p.23-38.
Whitlock C H, Poole L R, Usry J W, Houghton W M, Witte W G, Morris W D, Gurganus E A. 1981. Comparison of reflectance with backscatter and absorption parameters for turbid waters. Appl. Opt., 20(3): 517-522.
Woźniak S B. 1997. Mathematical spectral model of solar irradiance reflectance and transmittance by a wind-ruffled sea surface. Part 2. Modelling results and application.Oceanologia, 39(1): 17-34.
Yang H Y, Gordon H R. 1997. Remote sensing of ocean color:assessment of water-leaving radiance bidirectional effects on atmospheric diffuse transmittance. Appl. Opt., 36(30):7 887-7 897.
Zhang M W, Tang J W, Dong Q, Song Q T, Ding J. 2010.Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery.Remote Sens. Environ., 114(2): 392-403.
Zhang X D, Hu L B, He M X. 2009. Scattering by pure seawater: effect of salinity. Optics Express, 17(7): 5 698-5 710.
Zhao Q H, Wei Y Z, Ouyang X R. 2013. Spatial distribution of penetration depth in Taihu Lake (China) during spring and autumn. Chin. J. Oceanol. Limnol., 31(4): 907-916.
Zhou W, Wang S, Zhou Y, Troy A. 2006. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int. J. Remote Sens., 27(6): 1 177-1 191.
Copyright © Haiyang Xuebao