Cite this paper:
LU Lin, WANG Jun, YANG Guanpin, ZHU Baohua, PAN Kehou. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C: N ratios[J]. Journal of Oceanology and Limnology, 2017, 35(2): 303-312

Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C: N ratios

LU Lin1, WANG Jun2, YANG Guanpin2, ZHU Baohua1, PAN Kehou1,3
1 Key Laboratory of Mariculture of Ministry of Education, Ocean University of China, Qingdao 266003, China;
2 College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China;
3 Function Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
Abstract:
Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for largescale mixotrophic culture of T. chuii, as a potential bait-microalga.
Key words:    bait-microalga|C:N ratio|mixotrophic culture|Tetraselmis chuii   
Received: 2015-10-23   Revised: 2015-12-31
Tools
PDF (455 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by LU Lin
Articles by WANG Jun
Articles by YANG Guanpin
Articles by ZHU Baohua
Articles by PAN Kehou
References:
Alcántara C, Fernández C, García-Encina P A, Muñoz R. 2015.Mixotrophic metabolism of Chlorella sorokiniana and algal-bacterial consortia under extended dark-light periods and nutrient starvation. Applied Microbiology and Biotechnology, 99(5):2 393-2 404.
Alkhamis Y, Qin J G. 2016. Comparison of pigment and proximate compositions of Tisochrysis lutea in phototrophic and mixotrophic cultures. Journal of Applied Phycology, 28(1):35-42.
Andrade M R, Costa J A V. 2007. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate. Aquaculture, 264(1-4):130-134.
Arnon D I. 1949. Copper enzymes in isolated chloroplasts.Polyphenoloxidase in Beta vulgaris. Plant Physiology, 24(1):1-15.
Austin B, Baudet E, Stobie M. 1992. Inhibition of bacterial fish pathogens by Tetraselmis suecica. Journal of Fish Diseases, 15(1):55-61.
Azma M, Mohamed M S, Mohamad R, Rahim R A, Ariff A B. 2011. Improvement of medium composition for heterotrophic cultivation of green microalgae, Tetraselmis suecica, using response surface methodology. Biochemical Engineering Journal, 53(2):187-195.
Becker E W. 2013. Microalgae for aquaculture:nutritional aspects. In:Richmond A, Hu Q eds. Handbook of Microalgal Culture:Applied Phycology and Biotechnology. 2nd edn. John Wiley & Sons, Ltd, New York. p.671-691.
Benemann J R. 1992. Microalgae aquaculture feeds. Journal of Applied Phycology, 4(3):233-245.
Bhatnagar A, Chinnasamy S, Singh M, Das K C. 2011.Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters.Applied Energy, 88(10):3 425-3 431.
Bligh E G, Dyer W J. 1959. A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37(8):911-917.
Bondioli P, Bella L D, Rivolta G, Zittelli G C, Bassi N, Rodolfi L, Casini D, Prussi M, Chiaramonti D, Tredici M R. 2012.Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresource Technology, 114:567-572.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254.
Brown M R. 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 145(1):79-99.
Cerón G M C, Camacho F G, Mirón A S, Sevilla J M F, Chisti Y, Grima E M. 2006. Mixotrophic production of marine microalga Phaeodactylum tricornutum on various carbon sources. Journal of Microbiology and Biotechnology, 16(5):689-694.
Chaplin M F, Kennedy J F. 1994. Carbohydrate A nalysis:A Practical Approach. 2nd edn. Oxford University Press, Oxford.
Chen F, Johns M R. 1991.Effect of C/N ratio and aeration on the fatty acid composition of heterotrophic Chlorella sorokiniana. Journal of Applied Phycology, 3(3):203-209.
Chen F, Zhang Y M. 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme and Microbial Technology, 20(3):221-224.
Eriksen N T. 2008. The technology of microalgal culturing.Biotechnology Letters, 30(9):1 525-1 536.
Fernández F G A, Sevilla J M F, Grima E M. 2013.Photobioreactors for the production of microalgae.Reviews in Environmental Science and Bio/Technology, 12(2):131-151.
Floreto E A T, Teshima S, Ishikawa M. 1996. The effects of seaweed diets on the growth, lipid and fatty acids of juveniles of the White Sea Urchin Tripneustes gratilla.Fisheries Science, 62(4):589-593.
Fujii K, Nakashima H, Hashidzume Y, Uchiyama T, Mishiro K, Kadota Y. 2010. Potential use of the astaxanthinproducing microalga, Monoraphidium sp. GK12, as a functional aquafeed for prawns. Journal of Applied Phycology, 22(3):363-369.
Garofalo R. 2009. Algae and aquatic biomass for a sustainable production of 2nd generation biofuels. FP7-ENERGY-2009-1. AquaFUELs-Taxonomy, Biology and Biotechnology. p.1-258.
Gladue R M. 1991. Heterotrophic microalgae production:potential for application to aquaculture feeds. In:Fulks W, Main K L eds. Rotifer and Microalgae Culture Systems.Proceedings of a US-Asia Workshop, HI. p.275-286.
Glencross B D. 2009. Exploring the nutritional demand for essential fatty acids by aquaculture species. Reviews in Aquaculture, 1(2):71-124.
Guillard R R L, Ryther J H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) gran. Canadian Journal of Microbiology, 8(2):229-239.
Guillard R R. 2005. Purification methods for microalgae. In:Andersen R A ed. Algal Culturing Techniques. Elsevier, New York. p.117-132.
Hassan M, Blanc P J, Granger L M, Pareilleux A, Goma G. 1996. Influence of nitrogen and iron limitations on lipid production by Cryptococcus curvatus grown in batch and fed-batch culture. Process Biochemistry, 31(4):355-361.
Heifetz P B, Förster B, Osmond C B, Giles L J, Boynton J E. 2000. Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiology, 122(4):1 439-1 446.
Hemaiswarya S, Raja R, Kumar R R, Ganesan V, Anbazhagan C. 2011. Microalgae:a sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8):1 737-1 746.
Hillebrand H, Sommer U. 1999. The nutrient stoichiometry of benthic microalgal growth:redfield proportions are optimal. Limnology and Oceanography, 44(2):440-446.
Irianto A, Austin B. 2002. Probiotics in aquaculture. Journal of Fish Diseases, 25(11):633-642.
Jiang Y L, Yoshida T, Quigg A. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae.Plant Physiology and Biochemistry, 54:70-77.
Jiang Y, Chen F. 2000. Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6):613-617.
Kong W B, Yang H, Cao Y T, Song H, Hua S F, Xia C G. 2013.Effect of glycerol and glucose on the enhancement of biomass, lipid and soluble carbohydrate production by Chlorella vulgaris in mixotrophic culture. Food Technology and Biotechnology, 51(1):62-69.
Laing I, Verdugo C G. 1991. Nutritional value of spray-dried Tetraselmis suecica for juvenile bivalves. Aquaculture, 92:207-218.
Lepage G, Roy C C. 1984. Improved recovery of fatty acid through direct transesterification without prior extraction or purification. Journal of Lipid Research, 25(12):1 391-1 396.
Liang Y N, Sarkany N, Cui Y. 2009. Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions.Biotechnology Letters, 31(7):1 043-1 049.
Liu J G, Yin M Y, Zhang J P, Li B Q, Meng Z C. 2007.Application of Nannochloropsis salina as feedstuff in aquaculture. Marine Sciences, 31(5):4-9. (in Chinese with English abstract)
Luo L M, Hu H J, Li Y G, Qi Y Z, Lv S H, Geng Y H, Deng G. 2006. Molecular identification on Prorocentrum donghaiense. Acta Oceanologica Sinica, 28(1):127-131.(in Chinese with English abstract)
Mahious A S, Gatesoupe F J, Hervi M, Metailler R, Ollevier F. 2006. Effect of dietary inulin and oligosaccharides as prebiotics for weaning turbot, Psetta maxima (Linnaeus, C. 1758). Aquaculture International, 14(3):219-229.
Miao X L, Wu Q Y. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology, 97(6):841-846.
Muller-Feuga A, Robert R, Cahu C, Robin J, Divanach P. 2003. Uses of microalgae in aquaculture. In:Støttrup J G, McEvoy L A eds. Live Feeds in Marine Aquaculture.Blackwell Science Ltd, Oxford. p.253-299.
Murray M G, Thompson W F. 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8(19):4 321-4 326.
Nozaki H, Ito M, Watanabe M M, Takano H, Kuroiwa T. 1997.Phylogenetic analysis of morphological species of Carteria (Volvocales, Chlorophyta) based on rbcL gene sequences. Journal of Phycology, 33(5):864-867.
Olsen R E, Kiessling A, Milley J E, Ross N W, Lall S P. 2005.Effect of lipid source and bile salts in diet of Atlantic salmon, Salmo salar L., on astaxanthin blood levels.Aquaculture, 250(3-4):804-812.
Park K C, Whitney C, McNichol J C, Dickinson K E, MacQuarrie S, Skrupski B P, Zou J T, Wilson K E, O'Leary S J B, McGinn P J. 2012. Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada:potential applications for wastewater remediation for biofuel production. Journal of Applied Phycology, 24(3):339-348.
Perez-Garcia O, Escalante F M E, de-Bashan L E, Bashan Y. 2011. Heterotrophic cultures of microalgae:metabolism and potential products. Water Research, 45(1):11-36.
Ponis E, Probert I, Véron B, Mathieu M, Robert R. 2006. New microalgae for the Pacific oyster Crassostrea gigas larvae.Aquaculture, 253(1-4):618-627.
Ruyter B, Røsjø C, Einen O, Thomassen M S. 2000. Essential fatty acids in Atlantic salmon:time course of changes in fatty acid composition of liver, blood and carcass induced by a diet deficient in n-3 and n-6 fatty acids. Aquaculture Nutrition, 6(2):109-117.
Sathish A, Marlar T, Sims R C. 2015. Optimization of a wet microalgal lipid extraction procedure for improved lipid recovery for biofuel and bioproduct production.Bioresource Technology, 193:15-24.
Sun Y M, Shi Y, Hao Y Z. 2000. Technical manual for cultivation of aquatic organism. Agriculture Press, Beijing, China. p.1-17. (in Chinese)
Thomas W H, Seibert D L R, Alden M, Eldridge P, Neori A. 1983. Yields, photosynthetic efficiencies, and proximate chemical composition of dense cultures of marine microalgae. Technical Report. Scripps Institution of Oceanography, San Diego, CA.
Thomas W H, Seibert D L R, Alden M, Neori A, Eldridge P. 1984. Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. I.Introduction and Phaeodactylum tricornutum experiments. Biomass, 5(3):181-209.
Tredici M R, Biondi N, Ponis E, Rodolfi L, Zittelli G C. 2009.Advances in microalgal culture for aquaculture feed and other uses. In:Burnell G, Allan G eds. New Technologies in Aquaculture:Improving Production Efficiency, Quality and Environmental Management. Woodhead Publishing, Cambridge, UK. p.610-676.
Wan M X, Rosenberg J N, Faruq J, Betenbaugh M J, Xia J L. 2011. An improved colony PCR procedure for genetic screening of Chlorella and related microalgae.Biotechnology Letters, 33(8):1 615-1 619.
Wu Q Y, Yin S, Sheng G Y, Fu J M. 1994. New discoveries in study on hydrocarbons from thermal degradation of heterotrophically yellowing algae. Science in China, Series B, Chemistry, Life Sciences and Earth Sciences, 37(3):326-335.
Zhu C J, Lee Y K. 1997. Determination of biomass dry weight of marine microalgae. Journal of Applied Phycology, 9(2):189-194.
Copyright © Haiyang Xuebao