Cite this paper:
DING Yi, GAN Nanqin, LIU Jin, ZHENG Lingling, LI Lin, SONG Lirong. Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition[J]. Journal of Oceanology and Limnology, 2017, 35(2): 313-323

Survival, recovery and microcystin release of Microcystis aeruginosa in cold or dark condition

DING Yi1,2, GAN Nanqin1, LIU Jin1, ZHENG Lingling1, LI Lin1, SONG Lirong1
1 State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
2 Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
Abstract:
Microcystis often dominates phytoplankton in eutrophic lakes and must survive a long period of cold or dark conditions. However, the survival strategies of Microcystis to withstand cold or dark stress are less well known. In this study, we conducted experiments on the responses of two toxic Microcystis aeruginosa strains (FACHB-905 and FACHB-915) and their microcystin release in conditions of low temperature (15℃ or 4℃, with illumination) or darkness, and subsequent recovery in standard conditions (25℃ with illumination). On exposure to 15℃, a small decrease in cell viability was observed, but the cell number increased gradually, suggesting that M. aeruginosa FACHB-905 and FACHB-915 cells seem in general tolerant in 15℃. Interestingly, our results show that a higher carotenoid content and microcystin release potentially enhance the fitness of surviving cells at 15℃. M. aeruginosa cells exposed to lower temperature light stress (4℃) did not completely lose viability and retained the ability to reinitiate growth. In darkness, the maximum quantum yield (Fv/Fm) and the maximum electron transport rate (ETRmax) values and cell viability of M. aeruginosa cells gradually decreased with time. During the recovery period, the photosynthetic efficiency of M. aeruginosa reverted to the normal level. Additionally, M. aeruginosa FACHB-905 and FACHB-915 exposed to low temperature had increased caspase-3-like activity and DNA fragmentation, which suggests the occurrence of a type of cell death in M. aeruginosa cells under cold stress similar to programmed cell death. Overall, our findings could confer certain advantages on the Microcystis for surviving cold or dark conditions encountered in the annual cycle, and help explain its repeated occurrence in water blooms in large and shallow lakes.
Key words:    Microcystis aeruginosa|microcystin|low temperature|darkness|Caspase-3-like activity|DNA fragmentation   
Received: 2015-08-28   Revised: 2015-11-10
Tools
PDF (584 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by DING Yi
Articles by GAN Nanqin
Articles by LIU Jin
Articles by ZHENG Lingling
Articles by LI Lin
Articles by SONG Lirong
References:
Allakhverdiev S I, Kreslavski V D, Klimov V V, Los D A, Carpentier R, Mohanty P. 2008. Heat stress:an overview of molecular responses in photosynthesis. Photosynthesis Research, 98(1-3):541-550.
Anning T, Harris G, Geider R. 2001. Thermal acclimation in the marine diatom Chaetoceros calcitrans(Bacillariophyceae). European Journal of Phycology, 36(3):233-241.
Babica P, Bláha L, Maršálek B. 2006. Exploring the natural role of microcystins-a review of effects on photoautotrophic organisms. Journal of Phycology, 42(1):9-20.
Berges J A, Falkowski P G. 1998. Physiological stress and cell death in marine phytoplankton:induction of proteases in response to nitrogen or light limitation. Limnology and Oceanography, 43(1):129-135.
Bidle K D, Falkowski P G. 2004. Cell death in planktonic, photosynthetic microorganisms. Nature Reviews Microbiology, 2(8):643-655.
Bidle K D. 2015. The Molecular ecophysiology of programmed cell death in marine phytoplankton. Annual Review of Marine Science, 7:341-375.
Bouchard J N, Purdie D A. 2011. Effect of elevated temperature, darkness, and hydrogen peroxide treatment on oxidative stress and cell death in the bloom-forming toxic cyanobacterium Microcystis aeruginosa. Journal of Phycology, 47(6):1 316-1 325.
Bradford M M. 1976. Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72(1-2):248-254.
Dai G F, Quan C Y, Zhang X Z, Liu J, Song L R, Gan N Q. 2012. Fast removal of cyanobacterial toxin microcystinLR by a low-cytotoxic microgel-Fe (Ⅲ) complex. Water Research, 46(5):1 482-1 489.
Davis T W, Berry D L, Boyer G L, Gobler C J. 2009. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae, 8(5):715-725.
Ding Y, Gan N Q, Li J, Sedmak B, Song L R. 2012. Hydrogen peroxide induces apoptotic-like cell death in Microcystis aeruginosa (Chroococcales, Cyanobacteria) in a dosedependent manner. Phycologia, 51(5):567-575.
Ding Y, Song L R, Sedmak B. 2013. UVB radiation as a potential selective factor favoring microcystin producing bloom forming cyanobacteria. PLoS One, 8(9):e73919, http://dx.doi.org/10.1371/journal.pone.0073919,[electronically published:September 2013]. Dokulil M T, Teubner K. 2000. Cyanobacterial dominance in lakes. Hydrobiologia, 438(1-3):1-12.
Duan H T, Ma R H, Zhang Y C, Loiselle S A. 2014. Are algal blooms occurring later in Lake Taihu? Climate local effects outcompete mitigation prevention. Journal of Plankton Research, 36(3):866-871.
Dziallas C, Grossart H P. 2011. Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS One, 6(9):e25569, http://dx.doi.org/10.1371/journal.pone.0025569.
Franklin D J. 2014. Explaining the causes of cell death in cyanobacteria:what role for asymmetric division? Journal of Plankton Research, 36(1):11-17.
Furusato E, Asaeda T, Manatunge J. 2004. Tolerance for prolonged darkness of three phytoplankton species, Microcystis aeruginosa (Cyanophyceae), Scenedesmus quadricauda (Chlorophyceae), and Melosira ambigua(Bacillariophyceae). Hydrobiologia, 527(1):153-162.
Guo L S, Zhang J, Wu J et al. 2012. Morphological and biochemical changes of Microcystis aeruginosa PCC7806 subjected to dark and oxygen limitation. Acta Microbiologica Sinica, 52(2):228-235. (in Chinese)
Jewson D H. 1976. The interaction of components controlling net phytoplankton photosynthesis in a well-mixed lake(Lough Neagh, Northern Ireland). Freshwater Biology, 6(6):551-576.
Jochem F J. 1999. Dark survival strategies in marine phytoplankton assessed by cytometric measurement of metabolic activity with fluorescein diacetate. Marine Biology, 135(4):721-728.
LeBlanc Renaud S, Pick F R, Fortin N. 2011. Effect of light intensity on the relative dominance of toxigenic and nontoxigenic strains of Microcystis aeruginosa. Applied and Environmental Microbiology, 77(19):7 016-7 022.
Lei L M, Wu Y S, Gan N Q, Song L R. 2004. An ELISA-like time-resolved fluorescence immunoassay for microcystin detection. Clinica Chimica Acta, 348(1-2):177-180.
Mikula P, Zezulka S, Jancula D et al. 2012. Metabolic activity and membrane integrity changes in Microcystis aeruginosa-new findings on hydrogen peroxide toxicity in cyanobacteria. European Journal of Phycology, 47(3):195-206.
Moon Y J, Kim S I, Chung Y H. 2012. Sensing and responding to UV-A in cyanobacteria. International Journal of Molecular Sciences, 13(12):16 303-16 332.
Paerl H W, Huisman J. 2009. Climate change:a catalyst for global expansion of harmful cyanobacterial blooms.Environmental Microbiology Reports, 1(1):27-37.
Paerl H W, Otten T G. 2013. Harmful cyanobacterial blooms:causes, consequences, and controls. Microbial Ecology, 65(4):995-1 010.
Popels L C, MacIntyre H L, Warner M E, Zhang Y H, Hutchins D A. 2007. Physiological responses during dark survival and recovery in Aureococcus anophagefferens(Pelagophyceae). Journal of Phycology, 43(1):32-42.
Reynolds C S, Jaworski G H M, Cmiech H A, Leedale G F. 1981. On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Emend. Elenkin.Philosophical Transactions of the Royal Society of London.Series B, Biological Sciences, 293(1068):419-477.
Richards F A, Thompson T G. 1952. The estimation and characterization of plankton populations by pigment analyses. Ⅱ. A spectrophotometric method for the estimation of plankton pigments. Journal of Marine Research, 11:156-172.
Ross C, Santiago-Vázquez L, Paul V. 2006. Toxin release in response to oxidative stress and programmed cell death in the cyanobacterium Microcystis aeruginosa. Aquatic Toxicology, 78(1):66-73.
Sabour B, Sbiyyaa B, Loudiki M, Oudra B, Belkoura M, Vasconcelos V. 2009. Effect of light and temperature on the population dynamics of two toxic bloom forming Cyanobacteria-Microcystis ichthyoblabe and Anabaena aphanizomenoides. Chemistry and Ecology, 25(4):277-284.
Sakai H, Oguma K, Katayama H, Ohgaki S. 2007. Effects of low or medium-pressure UV irradiation on the release of intracellular microcystin. Water Research, 41(15):3 458-3 464.
Sakamoto T, Bryant D A. 1999. Nitrate transport and not photoinhibition limits growth of the freshwater cyanobacterium Synechococcus species PCC 6301 at low temperature. Plant Physiology, 119(2):785-794.
Schatz D, Keren Y, Vardi A, Sukenik A, Carmeli S, Börner T, Dittmann E, Kaplan A. 2007. Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environmental Microbiology, 9(4):965-970.
Segovia M, Haramaty L, Berges J A, Falkowski P G. 2003.Cell death in the unicellular chlorophyte Dunaliella tertiolecta. A hypothesis on the evolution of apoptosis in higher plants and metazoans. Plant Physiology, 132(1):99-105.
Sta C, Ledoigt S, Ferjani E, Goupil P. 2012. Exposure of Vicia faba to sulcotrione pesticide induced genotoxicity.Pesticide Biochemistry and Physiology, 103(1):9-14.
Tan X M, Zhu T, Shen S, Yin C T, Gao H, Xu X D. 2011. The role of Rbp1 in the acquired chill-light tolerance of cyanobacteria. Journal of Bacteriology, 193(11):2 675-2 683.
White S H, Duivenvoorden L J, Fabbro L D. 2005. A decisionmaking framework for ecological impacts associated with the accumulation of cyanotoxins (cylindrospermopsin and microcystin). Lakes & Reservoirs:Research & Management, 10(1):25-37.
Wu Z X, Song L R, Li R H. 2008. Different tolerances and responses to low temperature and darkness between waterbloom forming cyanobacterium Microcystis and a green alga Scenedesmus. Hydrobiologia, 596(1):47-55.
Yang Y, Yin C T, Li W Z, Xu X D. 2008. α-Tocopherol is essential for acquired chill-light tolerance in the cyanobacterium Synechocystis sp. Strain PCC 6803.Journal of Bacteriology, 190(5):1 554-1 560.
Yang Z, Kong F X, Shi X L, Yu Y, Zhang M. 2015. Effects of UV-B radiation on microcystin production of a toxic strain of Microcystis aeruginosa and its competitiveness against a non-toxic strain. Journal of Hazardous Materials, 283:447-453.
Yin C T, Li W Z, Du Y, Kong R Q, Xu X D. 2007. Identification of a gene, ccr-1 (sll1242), required for chill-light tolerance and growth at 15℃ in Synechocystis sp. PCC 6803.Microbiology, 153(Pt 4):1 261-1 267.
Zhang M, Duan H T, Shi X L, Yu Y, Kong F X. 2012a.Contributions of meteorology to the phenology of cyanobacterial blooms:implications for future climate change. Water Research, 46(2):442-452.
Zhang M, Shi X L, Yu Y, Kong F X. 2011. The acclimative changes in photochemistry after colony formation of the cyanobacteria Microcystis aeruginosa. Journal of Phycology, 47(3):524-532.
Zhang M, Yu Y, Yang Z, Kong F X. 2012b. Photochemical responses of phytoplankton to rapid increasingtemperature process. Phycological Research, 60(3):199-207.
Zilliges Y, Kehr J C, Meissner S, Ishida K, Mikkat S, Hagemann M, Kaplan A, Börner T, Dittmann E. 2011. The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One, 6(3):e17615, http://dx.doi.org/10.1371/journal.pone.0017615.
Copyright © Haiyang Xuebao