Cite this paper:
HUANG Xiaozhou, LIU Xin, CHEN Jixin, XIAO Wupeng, CAO Zhen, HUANG Bangqin. Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China[J]. Journal of Oceanology and Limnology, 2017, 35(2): 324-335

Seasonal variations of group-specific phytoplankton cell death in Xiamen Bay, China

HUANG Xiaozhou1,2, LIU Xin1, CHEN Jixin1, XIAO Wupeng1, CAO Zhen1, HUANG Bangqin1
1 Fujian Provincial Key Laboratory of Coastal Ecology and Environmental Studies Key Laboratory of Coastal and Wetland Ecosystems, Ministry of Education, Xiamen University, Xiamen 361005, China;
2 College of Oceanography and Food Science, Quanzhou Normal University, Quanzhou 362000, China
Abstract:
The importance of phytoplankton cell death is being increasingly recognized, however, there are still no published reports on this in Xiamen Bay. In this study, the proportion of dead phytoplankton cells associated with environmental factors was assessed at a station in Xiamen Bay from December 2012 to December 2013, using a cell digestion assay, which is an effective method to analyze dead/living cells in complex natural phytoplankton communities. The percentages of dead cells (% DC) in the total phytoplankton in summer (16%±6%) were lower than those in winter (27%±16%). Six groups of phytoplankton (G1-G6) were categorized by flow cytometry. These phytoplankton communities with diverse seasonal variations in% DC had different responses to environmental constraints. The main factors affecting mortality were temperature and salinity, while nutrient concentration showed little influence on phytoplankton death. Additionally, our results provide evidence that chlorophyll a concentrations had an inverse relationship with total phytoplankton% DC and viable cell abundance was more meaningful than total cells to explain variations in environmental parameters (such as Chl a). Moreover, the lowest mean% DC in total phytoplankton was 16%±6% at our sample site, which is in a subtropical area with high water temperatures, full solar radiation, and rich nutrients. This indicates that phytoplankton cell death is a process that cannot be ignored. In summary, phytoplankton cell death is important in understanding the dynamics of phytoplankton communities and the functioning of subtropical ecosystems.
Key words:    cell death|cell digestion assay|phytoplankton|Xiamen Bay   
Received: 2015-10-13   Revised: 2015-12-10
Tools
PDF (940 KB) Free
Print this page
Add to favorites
Email this article to others
Authors
Articles by HUANG Xiaozhou
Articles by LIU Xin
Articles by CHEN Jixin
Articles by XIAO Wupeng
Articles by CAO Zhen
Articles by HUANG Bangqin
References:
Agustí S, Alou E, Hoyer M V, Frazer T K, Canfield D E. 2006.Cell death in lake phytoplankton communities. Freshwater Biol., 51(8):1 496-1 506.
Agustí S, Duarte C M, Vaqué D, Hein M, Gasol J M, Vidal M. 2001. Food web structure and elemental (C, N and P)fluxes in the Eastern tropical North Atlantic. Deep Sea Res. Part Ⅱ, 48(10):2 295-2 321.
Agustí S, Sánchez M C. 2002. Cell viability in natural phytoplankton communities quantified by a membrane permeability probe. Limnol. Oceanogr., 47(3):818-828.
Agustí S, Satta M P, Mura M P, Benavent E. 1998. Dissolved esterase activity as a tracer of phytoplankton lysis:evidence of high phytoplankton lysis rates in the northwestern Mediterranean. Limnol. Oceanogr., 43(8):1 836-1 849.
Agustí S. 2004. Viability and niche segregation of Prochlorococcus and Synechococcus cells across the central Atlantic Ocean. Aquat. Microb. Ecol., 36:53-59.
Alonso-Laita P, Agustí S. 2006. Contrasting patterns of phytoplankton viability in the subtropical NE Atlantic Ocean. Aquat. Microb. Ecol., 43:67-78.
Bidle K D, Falkowski P G. 2004. Cell death in planktonic, photosynthetic microorganisms. Nat. Rev. Microbiol., 2(8):643-655.
Brussaard C P D, Mari X, van Bleijswijk J D L, Veldhuis M J W. 2005. A mesocosm study of Phaeocystis globose(Prymnesiophyceae) population dynamics:Ⅱ. Significance for the microbial community. Harmful Algae, 4(5):875-893.
Brussaard C P D, Noordeloos A A M, Riegman R. 1997.Phytoplankton cell lysis. Phycologia, 36(4):12.Brussaard C P D, Riegman R, Noordeloos A A M, Cadée G C, Witte H, Kop A J, Nieuwland G, van Duyl F C, Bak R P M. 1995. Effects of grazing, sedimentation and phytoplankton cell lysis on the structure of a coastal pelagic food web. Mar. Ecol. Prog. Ser., 123:259-271.
Brussaard C P D, Riegman R. 1998. Influence of bacteria on phytoplankton cell mortality with phosphorus or nitrogen as the algal-growth-limiting nutrient. Aquat. Microb.Ecol., 14(3):271-280.
Cao Z R, Huang B Q, Liu Y, Hong H S, Xie T G. 2005.Distribution characteristics of size-fractionated chlorophyll a in Xiamen waters. Journal of Oceanography in Taiwan Strait, 24(4):493-501. (in Chinese with English abstract)
Cole J J, Findlay S, Pace M L. 1988. Bacterial production in fresh and saltwater ecosystems:a cross-system overview.Mar. Ecol. Prog. Ser., 43:1-10.
Darzynkiewicz Z, Li X, Gong J. 1994. Assays of cell viability:discrimination of cells dying by apoptosis. In:Darzynkiewicz Z, Robinson J P, Crissman H A eds.Methods in Cell Biology. Academic Press, San Diego.p.15-38.
Dubelaar G B J, Venekamp R R, Gerritzen P L. 2003. Handsfree counting and classification of living cells and colonies. In:6th Congress on Marine Sciences. Havana, Cuba. 2003.
Evans C, Wilson W H. 2008. Preferential grazing of Oxyrrhis marina on virus infected Emiliania huxleyi. Limnol.Oceanogr., 53(5):2 035-2 040.
Falkowski P G, Barber R T, Smetacek V. 1998. Biogeochemical controls and feedbacks on ocean primary production.Science, 281(5374):200-206.
Field C B, Behrenfeld M J, Randerson J T, Falkowski P. 1998.Primary production of the biosphere:integrating terrestrial and oceanic components. Science, 281(5374):237-240.
Franklin D J, Brussaard C P D, Berges J A. 2006. What is the role and nature of programmed cell death in phytoplankton ecology? Eur. J. Phycol., 41(1):1-14.
Fussmann G F, Ellner S P, Shertzer K W, Hairston N G Jr. 2000. Crossing the Hopf bifurcation in a live predatorprey system. Science, 290(5495):1 358-1 360.
Garvey M, Moriceau B, Passow U. 2007. Applicability of the FDA assay to determine the viability of marine phytoplankton under different environmental conditions.
Mar. Ecol. Prog. Ser., 352:17-26.
Geider R J, Delucia E H, Falkowski P G, Finzi A C, Grime J P, Grace J, Kana T M, La Roche J, Long S P, Osborne B A, Platt T, Prentice I C, Raven J A, Schlesinger W H, Smetacek V, Stuart V, Sathyendranath S, Thomas R B, Vogelmann T C, Williams P, Woodward F I. 2001. Primary productivity of planet earth:biological determinants and physical constraints in terrestrial and aquatic habitats.Global Change Biol., 7(8):849-882.
Hansen K, Koroleff F F. 1999. Determination of nutrients. In:Grasshoff K, Kremling K, Ehrhardt M eds. Methods of seawater analysis. Wiley-VCH, Weinheim. p.159-228.
Hayakawa M, Suzuki K, Saito H, Takahashi K, Ito S I. 2008.Differences in cell viabilities of phytoplankton between spring and late summer in the northwest Pacific Ocean. J.Exp. Mar. Biol. Ecol., 360(2):63-70.
Huang B Q, Lin X J, Hong H S. 2000. Distribution and environmental controlling of picophytoplankton in western Xiamen waters. Journal of Oceanography in Taiwan Strait, 19(3):329-336. (in Chinese with English abstract)
Kirchman D L. 1999. Oceanography:phytoplankton death in the sea. Nature, 398(6725):293-294.
Lee D Y, Rhee G Y. 1997. Kinetics of cell death in the cyanobacterium Anabaena flos-aquae and the production of dissolved organic carbon. J. Phycol., 33(6):991-998.
Liao W J. 2010. Further characterization of metacaspase expression and activity in marine phytoplankton.University of New Jersey, New Brunswick. 77p.
Llabrés M, Agustí S. 2008. Extending the cell digestion assay to quantify dead phytoplankton cells in cold and polar waters. Limnol. Oceanogr:Methods, 6(12):659-666.
Llabrés M, Agustí S. 2010. Effects of ultraviolet radiation on growth, cell death and the standing stock of Antarctic phytoplankton. Aquat. Microb. Ecol., 59:151-160.
Onji M, Sawabe T, Ezura Y. 2000. An evaluation of viable staining dyes suitable for marine phytoplankton. Bull.Fac. Fish. Hokkaido Univ., 51(3):153-157.
Peperzak L, Brussaard C P D. 2011. Flow cytometric applicability of fluorescent vitality probes on phytoplankton1. J. Phycol., 47(3):692-702.
Redfield A C. 1958. The biological control of chemical factors in the environment. Am. Sci., 46:205-221.
Rychtecký P, Znachor P, Nedoma J. 2014. Spatio-temporal study of phytoplankton cell viability in a eutrophic reservoir using SYTOX Green nucleic acid stain.Hydrobiologia, 740(1):177-189.
Smith D C, Steward G F, Long R A, Azam F. 1995. Bacterial mediattion of carbon fluxes during a diatom bloom in a mesocosm. Deep Sea Res. Part Ⅱ, 42(1):75-97.
Team R D C. 2013. R Foundation for Statistical Computing.Vienna, Austria. p.482.
Thyssen M, Mathieu D, Garcia N, Denis M. 2008. Short-term variation of phytoplankton assemblages in Mediterranean coastal waters recorded with an automated submerged flow cytometer. J. Plankton Res., 30(9):1 027-1 040.
Valiela I. 1995. Marine Ecological Processes. Springer-Verlag, New York, NY.
van Boekel W H M, Hansen F C, Riegman R, Bak R P M. 1992. Lysis-induced decline of a Phaeocystis spring bloom and coupling with the microbial food web. Mar.Ecol. Prog. Ser., 81(3):269-276.
Veldhuis M J W, Brussaard C P D. 2006. Harmful algae and cell death. In:Granéli E, TurnerJ T eds. Ecology of Harmful Algae. Springer, Berlin Heidelberg. p.153-162.
Welschmeyer N A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments.Limnol. Oceanogr., 39(8):1 985-1 992.
Wetzel R G. 1995. Death, detritus, and energy flow in aquatic ecosystems. Freshwater Biol., 33(1):83-89.
Copyright © Haiyang Xuebao